
August 9, 2016

MASTER THESIS

ACHIEVING 128-BIT SECURITY

AGAINST QUANTUM ATTACKS IN

OPENVPN

Simon de Vries

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)

Services, Cybersecurity and Safety (SCS)

Graduation committee:

dr. A. Peter

dr. M.H. Everts

N. Duif, MSc (Ministerie BZK)

1

Achieving 128-bit Security against
Quantum Attacks in OpenVPN

Simon de Vries

Abstract—Niederreiter is a candidate post-quantum cryptosystem. Its large public key size currently discourages its use in practice.

We demonstrate and evaluate how Niederreiter can be used for quantum-secure key exchanges by implementing it in OpenVPN. We

contribute an analysis of how much Grover’s algorithm can speed up existing attacks on Niederreiter and McEliece and what code

parameters can protect against these attacks. We provide parameters for 128-bit quantum security that result in almost 35% smaller

keys than parameters currently available in literature.

Index Terms—OpenVPN, post-quantum cryptography, McEliece, Niederreiter, key exchange

✦

1 INTRODUCTION

O PENVPN is a software application which can be used
to set up a Virtual Private Network (VPN) [1]. It allows

connecting two private networks over a public untrusted
network, creating a secure channel between the private
networks. In order to provide this secure link, TLS is used
for key exchange.

1.1 A new threat: quantum computers

The most used algorithms for key exchange in TLS are RSA,
Diffie-Hellman and Elliptic Curve Diffie-Hellman. These
algorithms respectively rely on the integer factorization
problem, the Diffie-Hellman problem, and the elliptic curve
Diffie-Hellman problem. No classical algorithms to solve
these problems in polynomial time are known. However,
these problems can be solved in polynomial time on a
quantum computer, using Shor’s algorithm [2]. Almost all
asymmetric cryptography in use today can be efficiently
broken by quantum algorithms.

Symmetric cryptography, on the other hand, seems to
be able to survive quantum computer attacks. The best
quantum attacks on symmetric ciphers and hash functions
currently known use Grover’s algorithm [2]. In order to find
a 256-bit symmetric key from a number of plaintexts and ci-
phertexts, or to find a pre-image for a 256-bit hash function,
Grover’s algorithm needs approximately 2128 iterations. In
practice there can additionally be significant overhead from
quantum error correction [3], [4].

Although powerful quantum computers do not exist yet,
it is expected to be only a matter of time before they can be
used to break current key exchange algorithms [2]. In Febru-
ary 2016, NIST published a draft report on Post-Quantum
Cryptography which states that “many scientists now be-
lieve it [building a large quantum computer] to be merely a
significant engineering challenge”, although still substantial
long-term efforts are needed to actually build one [5]. NIST
is reluctant to provide concrete estimates of when scalable
quantum computers will be available, although they do
include an estimation from Matteo Mariantoni, a scientist
who has been working on quantum computer research. He
estimates that “it is likely that a quantum computer capable

of breaking RSA-2048 in a matter of hours could be built
by 2030 for a budget of about a billion dollars” [5], [6].
Quantum computers have already successfully factorized
small integers [7], [8]. Worryingly, an attacker can store
intercepted key exchanges and ciphertexts today and de-
crypt them when a large-scale quantum computer will be
available. Depending on when (and if) powerful quantum
computers will become available, this may make current
asymmetric cryptography unsuitable for encryption of long-
term secrets.

1.2 A new defense: post-quantum cryptography

A number of defenses against quantum computer attacks
are known. A possible solution is to use quantum key distri-
bution, which uses quantum communication to exchange a
key between two parties and can be mathematically proven
secure assuming some physical laws hold. A significant
disadvantage of this solution is that it is incompatible with
current networking hardware and therefore cannot be used
across the Internet. Another solution is to use classical cryp-
tosystems that are not known to be vulnerable to quantum
computer attacks, for example by using only symmetric
cryptography. However, this would significantly change the
OpenVPN protocol and forward secrecy will be lost. A
third and most promising solution is to replace vulnerable
asymmetric cryptography in OpenVPN by cryptosystems
that are still considered secure in a quantum-world. These
cryptosystems are part of post-quantum cryptography.

1.3 Our contribution

We will investigate how post-quantum cryptography can
be used to achieve 128-bit quantum security in OpenVPN.
In a quantum world, OpenVPN’s current Diffie-Hellman
key exchange will be broken. Because quantum computers
capable of breaking current asymmetric cryptography do
not exist yet, they cannot be used to break authenticity
of key exchanges protected by digital signatures today.
Therefore in this paper we focus on the confidentiality of
the key exchange.

2

We will implement the McEliece cryptosystem in Open-
VPN, extending the existing key exchange by one secure
against quantum attackers. We use McEliece because it is
the oldest asymmetric post-quantum primitive and is one
of the most trusted candidates for post-quantum cryptogra-
phy. It was published in 1978 by Robert McEliece [9]. No
efficient quantum attack on McEliece is known [10]. The
best known attack uses Grover’s algorithm to speed up
existing information-set decoding attacks [11]. McEliece’s
main disadvantage is its large public key size, which is why
it is currently not being used in practice. At time of writing,
only very few implementations of McEliece are publicly
available.

We provide two complementary measures to mitigate
the challenge of McEliece’s large public keys. Firstly, we
analyse how much Grover’s algorithm can speed up exist-
ing attacks on McEliece and what parameters of McEliece
can protect against these attacks. We provide parameters
for 128-bit quantum security that result in almost 35%
smaller keys compared to parameters currently suggested in
literature. Secondly, we introduce a mechanism to minimize
OpenVPN’s handshake time when using the large McEliece
keys. We demonstrate and evaluate the usability of our
solution in practice by benchmarking it against regular
OpenVPN.

Our main contributions are new McEliece parameters
that result in almost 35% smaller keys for 128-bit quantum
security and an implementation of McEliece in OpenVPN
which is publicly available and usable in practice. For easy
verification and for further research, we make our source
files and computations publicly available in the supplemen-
tary material provided along with this paper.

1.4 Outline

This paper is organized as follows. Section 2 provides
background information on the McEliece and Niederreiter
cryptosystems. We give definitions of the key generation,
encryption and decryption methods, review what codes
are suitable for McEliece and give an overview of exist-
ing attacks against McEliece. In Section 3, we analyse the
impact of Grover’s algorithm on existing attacks against
McEliece in order to optimize parameters for 128-bit quan-
tum security. In Section 4, we explain how McEliece can
be implemented in OpenVPN and how a key caching
mechanism can be used to minimize OpenVPN handshake
time. We discuss security guarantees and robustness of
the key caching mechanism. In Section 5, we evaluate our
solution by benchmarking the quantum-secure OpenVPN
against regular OpenVPN. Finally, in Section 6 we provide
conclusions and recommendations.

2 REVIEW OF MCELIECE AND NIEDERREITER

McEliece is a post-quantum public-key cryptosystem pub-
lished in 1978 by Robert McEliece [9]. The security of
McEliece is based on the problem of decoding linear codes.
If the code is indistinguishable from a random linear code,
this is an NP-hard problem [12]. Even though this does not
imply hardness for the average case or even for specific
codes (many specific codes have been broken by structural

attacks), it still gives confidence that this cryptosystem will
not be broken by generic attacks. McEliece is one of the
oldest public-key cryptosystems and has fast encryption and
decryption functions.

The Niederreiter cryptosystem is a variant of the
McEliece cryptosystem published in 1986 [13]. From a secu-
rity point of view, the Niederreiter variant is equivalent to
the original McEliece cryptosystem [14]. It is called the dual
variant of McEliece because it uses the parity check matrix
instead of the generator matrix, and ciphertexts consist of
syndromes as opposed to codewords to which an error
vector has been added. The advantage of this variant is that
the public key is slightly smaller. For a binary linear code
of length n, rank k and minimum distance d, the public
key matrix has dimensions (n− k)× n instead of k × n for
McEliece. For parameters suggested by the EU PQCRYPTO
project [15] (n = 6960, k = 5413), this results in a public
key of size 1.3 MiB for Niederreiter and of size 4.6 MiB for
McEliece. Transforming a key into standard form, where the
leftmost part of the public key equals the identity matrix,
reduces the effective key size to k(n − k) or 1.0 MiB for
the parameters mentioned above. Using Niederreiter for
encryption and decryption is slightly slower than McEliece
because messages have to be encoded into error vectors. We
briefly describe the Niederreiter cryptosystem by giving a
definition of the KeyGen, Encrypt and Decrypt procedures:

Key generation

1) Given security parameters n, k, d, randomly select
a linear code C of length n, rank k and minimum
distance d. We will call such a code an [n, k, d]
code. An efficient decoding algorithm for C has to
be known.

2) Generate an (n− k)× n parity check matrix H .
3) Choose a random (n−k)× (n−k) invertible binary

matrix S and a random n × n permutation matrix
P . The public key consists of the product Hpub =
SHP , along with the number of correctable errors
t = ⌊d−1

2 ⌋. The private key consists of (S, P) and
the decoding algorithm of C.

Remark (Choosing S and P). Instead of choosing S randomly
it can be selected such that SHP is in standard form.
Also, P can be set to the identity matrix, because when the
cryptosystem is based on a binary Goppa code selecting a
random permutation matrix is equivalent to using a uni-
formly random support vector. Permuting the elements of
the support vector gives the same result as permuting the
columns of the parity check matrix of a Goppa code. We will
assume this choice of S and P in the following.

Encryption

1) Given a public key Hpub = SHP and the number
of correctable errors t, and a message encoded as
an error vector e ∈ F

n
2 of weight t, compute the

syndrome of e:

c = Hpube
T .

*

* Available at: https://www.simondevries.com/openvpn.zip

https://www.simondevries.com/openvpn.zip

3

Decryption

1) Given a ciphertext c and a Niederreiter private key,
undo the multiplication by S:

S−1c = HPeT .

2) Use the syndrome decoding algorithm to decode
HPeT to PeT .

3) Invert the permutation of the decoded error vector
PeT to obtain the original error vector P−1PeT =
eT .

4) Typically, e will be decoded to the original message
m.

The Niederreiter cryptosystem is especially suitable for
key exchange, since it is easy to generate a random error
vector of a given weight (as opposed to encoding a mes-
sage into an error vector of given weight). When using
Niederreiter for key exchange, during encryption an error
vector is randomly generated. By applying a key-derivation
function, a shared secret can be established from the error
vector. We will do so in our implementation in OpenVPN.
This approach was introduced by Shoup in 2001 [16], proven
secure for use with Niederreiter by Persichetti in 2012 [17]
and previously used in McBits [18].

2.1 Codes suitable for McEliece

Robert McEliece originally proposed to use binary Goppa
codes for the McEliece cryptosystem [9]. In an attempt to
reduce McEliece’s key size, researchers have been looking
for other linear codes. Although selecting a different code
often significantly reduces the public key size, the resulting
cryptosystem is often much easier to break as well. Table 1
lists various attempts of using different codes or subclasses
of binary Goppa codes, showing the key size reduction
and whether is was broken. Most of these codes were
broken by structural decoding [19]. A lot of research has
been done to breaking McEliece with binary Goppa codes
yielding new attacks [20], [21]. This has resulted in a revision
of secure parameters [21], but with these parameters the
scheme is secure against all known attacks. There are two
other unbroken proposals for codes that can be used with
McEliece [22], [23]. However, these proposals are so recent
that more research should be done to gain confidence in the
cryptosystem’s security. We choose to use the original binary
Goppa code because it is unbroken for almost 40 years.

2.2 Attacks on Niederreiter

The security of the Niederreiter cryptosystem depends on
the following two security assumptions: 1

1) The selected linear code is indistinguishable from a
random linear code, and

2) Decoding a random linear code is hard.

As all attacks need to break at least one of these assump-
tions, two types of attacks on Niederreiter can be distin-
guished: structural (or general) attacks and decoding attacks.
Structural attacks aim to break the first assumption by

1. See [37], section 2.4, for a more precise definition of these assump-
tions

discovering the original structure of the scrambled public
key, in order to obtain the unscrambled private key. The
feasibility of structural attacks mainly depends on the type
of code used and the code parameters. On the other hand,
decoding attacks aim to decode a codeword, using only
the public key. If the first assumption holds, the feasibility
of these attacks depends only on the length, rank and
minimum distance of the code. The decoding problem is
an NP-hard problem [12] and the best general decoding al-
gorithms have their complexity exponential in n. Although
the distinguishability problem for binary Goppa codes has
not yet been reduced to a hard problem, the only efficient
distinguisher known is a distinguisher for high-rate Goppa
codes [38].

One of the main reasons Niederreiter is studied is
because there are no efficient quantum computer attacks
known [10]. The only known attack is a general attack using
Grover’s algorithm to improve a classical information-set
decoding (ISD) attack on McEliece [11]. This has yielded
an attack with a complexity of c(1/2+o(1))n/ logn, where

c = 1/(1 − k
n)

1− k

n . This attack, however, only uses
a ‘basic’ information-set decoding attack as described
by McEliece [9] and originally introduced in 1962 by
Prange [39]. A number of more advanced classical
information-set decoding attacks exist and can be found
in [21], [40], [41], [42], [43], [44], [45]. These attacks have
resulted in a revision of McEliece’s parameters [21]. The best
of these attacks has a classical complexity of 20.0494n [43].
The advanced forms of information set decoding attacks
decrease the number of iterations at the cost of increasing
complexity per iteration. An overview of these attacks is
given in Table 3. In the next sections, we will analyse the
complexity of attacks when the iterative search step is
replaced by Grover’s algorithm. Apart from speeding up
existing attacks on McEliece using Grover’s algorithm, no
quantum attacks against McEliece are currently known.

Grover’s algorithm is a quantum computer algorithm
published in 1996 [46]. It was introduced as an algorithm
for efficiently searching a database: given an unsorted list
of n items, Grover’s algorithm can find the index of a given
item in π

4

√
n steps with high probability using log2(n)

qubits. The best classical algorithm needs 1
2n steps on

average. Although the description of Grover’s algorithm as
a way of searching a database suggests all items need to be
kept in memory, this is not the case. In fact, the algorithm
only needs access to a black box function that outputs
a value of 0 for the matching item and 1 for all other
inputs. This leads to the following alternative description
of Grover’s algorithm as a ‘quantum root-finding circuit’
(as stated in [11]). Given any black box function f which is
implemented in a quantum circuit:

f : {0, 1}b → {0, 1} (1)

Grover’s algorithm finds (with high probability) a b-bit
string x such that f(x) = 0, or determines that such a
string x does not exist. Note that in this case the search
space is a set containing n = 2b bit strings. Even though f
needs to be implemented as a quantum circuit, any classical
algorithm can be implemented as a reversible quantum
circuit. This can be done by first converting the classical

4

TABLE 1
Overview of different codes used for McEliece.

Type of code Proposed by Current status

Binary Goppa codes R. McEliece, 1978 [9] Unbroken as of 2016

Generalized Reed-Solomon (GRS) codes H. Niederreiter, 1986 [13] Broken in 1992 [24]

Maximum rank distance (MRD) codes E. Gabidulin et al., 1991 [25] and 1993 [26] Broken in 1994 [27] and 1996 [28]

Reed-Muller codes V.M. Sidelnikov, 1994 [29] Broken in 2007 [30]

Quasi-cyclic subcodes of a primitive BCH code P. Gaborit, 2005 [31] Broken in 2008 [32]

Quasi-cyclic low density parity-check codes M. Baldi et al., 2007 [33] Broken in 2008 [32]

Wild McEliece D.J. Bernstein et al., 2010 [19] Specific instances broken in 2014 [34], [35]

Wild McEliece Incognito D.J. Bernstein et al., 2011 [36] Specific instances broken in 2014 [35]

Quasi-cyclic moderate density parity-check codes R. Misoczki et al., 2013 [22] Unbroken as of 2016

Random linear codes Y. Wang, 2016 [23] Unbroken as of 2016

algorithm to an algorithm containing only NAND-gates
(which is always possible because NAND is functionally
complete), and then converting this circuit to a quantum
circuit built from Toffoli gates, as described in [11]. For
example, f can be implemented as a function that returns 0
if and only if the input is an AES-key for a certain plaintext-
ciphertext combination [3], or a SHA-256 pre-image for a
certain hash [4].

Grover’s algorithm has two limitations. One limitation
is that although Grover’s algorithm can be parallelized,
this does not result in a linear speedup. Given m quantum
computers searching in a set of n items, the time complexity
is π

4

√

n
m [47]. A straightforward way of achieving this

speedup is by splitting the search space of n items into m
sets of n

m items, and having each quantum computer search
in one of these sets. The other limitation is that Grover’s
algorithm cannot be applied iteratively, meaning that the
black box function f cannot contain an instance of Grover’s
algorithm.

If there are k matching items in a set of n (as opposed
to only one matching item), Grover can find an arbitrary
matching item in π

4

√

n
k steps. This optimization can even be

used if the number of matching items is not known ahead
of time [48].

Grover’s algorithm is optimal in at least three ways.
Firstly, there does not exist a quantum algorithm that can
solve the search problem faster than π

4

√
n [49]. Secondly,

when Grover’s algorithm is stopped after some number of
oracle queries, the probability that it has found the correct
result is maximal [47]. Thirdly, the time complexity of find-
ing any solution when there are multiple matching items is
optimal [48].

For symmetric ciphers, an attack using Grover’s algo-
rithm reduces the cipher’s security to at most half of the
intended number of bits. For example, it takes about 2128

Grover iterations to find a 256-bit AES-key. This means that
for 128-bit quantum security, setting the key size or hash
output length to 256 bits is sufficient. Similarly, for code-
based cryptosystems selecting system parameters (n, k, d)
which provide 256-bit security against classical attacks is
sufficient to provide 128-bit security against quantum at-
tacks. However, Grover only reduces the number of itera-
tions but does not reduce the cost per iteration. In order

to optimize parameters, we should therefore analyse the
impact of Grover’s algorithm on attacks on McEliece more
carefully. We will do so in the following section.

3 SELECTING PARAMETERS FOR NIEDERREITER

All information-set decoding algorithms listed in Table 3 are
probabilistic: they consist of an algorithm A that, with some
probability p, decodes a codeword with errors (or finds a
codeword of small weight). This algorithm is then iterated
until the attack is successful, which is expected to happen
after 1

p iterations. When adapting a classical information-set
decoding algorithm to a quantum information-set decoding
algorithm with Grover, we set the function f (from Equation
1) to a function that returns 0 when the algorithm A was
successful given the input x of f , and 1 otherwise. Now
the attack will be successful with high probability after only
π
4

√

1
p iterations.

This transformation has a small cost: firstly, Grover’s
algorithm supplies a string of qubits x of certain length
to the function f , whereas information-set decoding algo-
rithms typically have input values of different forms (for
example a vector of certain weight). The bitstring x needs to
be transformed to a suitable input for A. Also, since A needs
to be implemented as a reversible quantum circuit [3], [11], it
is no longer possible to skip an iteration if a submatrix from
the parity check matrix is not invertible. To determine the
the minimum number of qubit operations, for each decoding
algorithm we need to determine the following quantities:

• pinv ; the probability that a random binary matrix is
invertible. As the matrix size increases, this probabil-
ity quickly converges to pinv ≈ 0.29.

• psuccess; the probability that one iteration of the
classical decoding algorithm is successful, given that
the selected columns of the matrix are invertible.

• cdecode; the cost in qubit operations of decoding the
input qubits to the inputs of the classical algorithm.

• cinv ; the cost in bit operations of inverting the se-
lected columns of the matrix.

• cit; the number of bit operations operations needed
to perform one iteration of the classical decoding al-
gorithm, without the cost of inverting the submatrix.

5

If we are given these quantities, it can be seen that the
minimum number of qubit operations, or binary workfactor
WF , for each quantum decoding algorithm can be com-
puted as follows:

WF =
π

4

√

1

pinv · psuccess
(cdecode +cinv +cit) . (2)

The factor
(

π
4

√

1
pinv·psuccess

)

gives the expected number of

iterations each algorithm needs to decode a codeword. Each
iteration consists of 1) decoding the iteration’s parameters
from the input qubits, 2) inverting the selected columns,
and 3) the cost to finish the iteration. Therefore the sum
(cdecode +cinv +cit) gives the cost of each iteration. We will
explain how we obtain the value of psuccess, cdecode, cinv
and cit in the next subsection.

3.1 Non-asymptotic complexity of quantum attacks

The probability psuccess and cost cit are equal to the clas-
sical iteration success probability (given that the selected
columns are invertible) and classical iteration cost, respec-
tively. These are already known; for ‘basic ISD’, we extract
them from [11], for Stern’s algorithm, we use the values
mentioned in Stern’s paper [41], and for MMT and BJMM
we obtain them from [50]. We assume the cost of Gaussian
elimination of a matrix of dimension k×n is 1

2k
3+(n−k)k2

qubit operations. This is equal to the classical cost given by
Stern [41] and is consistent with the quantum cost Bernstein
assumes [11]. We use this cost to compute cinv .

The cost in qubit operations of decoding the input qubits,
cdecode, is different for each algorithm. An operation which
is used multiple times is the transformation of a bitstring of
length log2

(n
k

)

into a selection of k out of n elements. To
carry out this operation we use the algorithm from [51] with
complexity O(n2 log n) to decode an integer into a vector
of length n and weight k. We assume the cost in qubit
operations is equal to n2 log n and denote the cost of this
transformation as cselect(k, n) = n2 log2 n. Now the precise
decoding cost cdecode can be computed for each quantum
decoding algorithm in the following way:

• For ‘basic ISD’, the only parameter that needs to be
decoded in each iteration of Grover’s algorithm is a
selection of k out of n columns. Therefore for basic
ISD, cdecode = cselect(k, n).

• In each iteration of quantum Stern’s algorithm, the
following three items need to be decoded from the
input qubits: a selection of n − k out of n pivot
columns, a partition of k integers into two sets X
and Y , and a set J containing a selection of l indices
out of n − k options. Here l is a parameter of Stern
which given n and k can be optimized and set to a
fixed value. This respectively costs cselect(n − k, n),
k and cselect(l, n− k) qubit operations, giving a total
cost of cdecode = cselect(n−k, n)+k+cselect(l, n−k).

• The input of the quantum MMT algorithm is a selec-
tion of (n− k − l1) out of n columns and a selection

of sets E1,2,3,4, containing
((k+l1)/2

m/4

)

vectors of weight
1
4m and length k+l1. Sets E1,2 have disjoint supports,
as do sets E3,4. The variables m and l1 are parame-
ters which are set to a fixed value. The selection of

columns costs cselect(n− k − l1, n) qubit operations.
For decoding a string of qubits into sets E1,2 with
disjoint supports, we first decode the support of E1,
requiring cselect(

k+l1
2 , k + l1) qubit operations. The

support of E2 consists of the positions not selected
for the support of E2, so the sets indeed have disjoint

supports. Next, for both sets, we select
((k+l1)/2

m/4

)

vectors of weight 1
4m and length (k + l1)/2 instead

of k+l1, because only the vector positions selected in
the support may be used. In fact, we have only one
possibility here, by selecting all vectors of the afore-
mentioned length and weight. This means for this se-
lection of vectors no decoding is needed. However, in
order for these vectors to be usable to the algorithm,

we do need to decode each of the 2
((k+l1)/2

m/4

)

vectors

of weight 1
4m and length (k+l1)/2. The cost of this is

((k+l1)/2
m/4

)

(cselect(m/4, (k + l1)/2)) qubit operations.

Combining these costs, we obtain a decoding cost of:

cdecode =cselect(n− k − l1, n)

+2

(

cselect

(

k + l1
2

, k + l1

)

+ 2

(

k+l1
2
m
4

)

cselect

(

m

4
,
k + l1

2

)

)

• The quantum BJMM algorithm has a selection of
(n − k − l) out of n columns, and 8 sets E1···8
each containing

((k+l)/2
p2/2

)

vectors of weight 1
2p2 and

length k + l as input. The variables l and p2 are
fixed algorithm parameters. Sets E2i−1 and E2i have
disjoint supports. Using the same reasoning as for the
decoding of quantum MMT’s inputs, it can be seen
that the decoding cost of quantum BJMM is given by:

cdecode =cselect(n− k − l, n)

+4

(

cselect

(

k + l

2
, k + l

)

+ 2

(

k+l
2
p2

2

)

cselect

(

p2
2
,
k + l

2

)

)

The exact formulas for psuccess, cdecode, cinv and cit for each
algorithm are listed in Appendix A.

3.2 Optimizing parameters for 128-bit quantum secu-

rity

In order to choose the code parameters such that the
public key size is as small as possible, we compute the
non-asymptotic complexities of Basic ISD, Stern’s algo-
rithm, MMT and BJMM as described above for codes with
3000 ≤ n, k ≤ 10000. It turns out that for these codes,
quantum Stern is the fastest of these attacks. The complexity
of quantum Stern is depicted in Figure 1, and we provide
the complexity of the other algorithms in the supplemental
materials. The white line in the graph for quantum Stern
represents optimal code parameters: for these parameters,
there do not exist other parameters that have at least the
same attack cost but smaller public key sizes. We compute
the key sizes for keys in standard form, so the key size
of an [n, k, d] binary code equals k(n − k) bits. There are

6

two transitions visible in this graph, near n = 4096 and
n = 8192. These transitions occur because the code needs to
use a larger field near these values: for binary Goppa codes
we need to switch from GF(212) to GF(213) and GF(214)
when n becomes greater than 4096 and 8192, respectively.

From the optimal code parameters from Figure 1 we can
compute the Niederreiter public key size for a given security
threshold. Figure 2 shows the public key size in kilobytes for
a given security in bits against both a classical and quantum
computer attacker. For example, when a key provides 128
bits of classical (or quantum) security, the best attack needs
at least 2128 binary operations on a classical (or quantum)
computer. In these graphs again some bumps are visible:
the key size suddenly increases from approximately 400 KB
up to approximately 460 KB. This is caused by a transition
from GF(212) to GF(213). The ‘PQCRYPTO recommenda-
tion’ graph displays the public key size if Grover can speed
up classical attacks exactly by taking the square root. This
assumption is made for the initial recommendations of the
EU PQCRYPTO project [15]. We have shown that although
Grover can significantly reduce the attack cost, this worst-
case assumption is overly conservative. A more careful
analysis of the cost of quantum information-set decoding
yields keys that are almost 35% smaller compared to the
size of parameters under this assumption. For comparison,
in Table 2 we show the parameters as suggested by the EU
PQCRYPTO project and compare them with new parame-
ters which also aim to provide 128-bit security against quan-
tum computer attackers. Interestingly, the EU PQCRYPTO
parameters have a security of approximately 240 bits against
a classical attacker instead of the expected 256 bits. This can
be explained by the fact that the parameters suggested by
the EU PQCRYPTO initial recommendation are taken from a
paper published in 2008 [21]. Only the BJMM attack, which
was published in 2012 [43], can break this algorithm in less
than 2256 bit operations.

We point out that our new security estimates are still
based on conservative assumptions. Firstly, in practice,
qubits suffer decoherence and quantum error correction is
needed to overcome this. This can add significant overhead,
as has been demonstrated by [4]. They estimate the cost of
performing a pre-image on SHA-256 at 2162 logical-qubit-
cycles using a surface code, even though Grover needs only
π
4 2

128 iterations. Secondly, the advanced information-set
decoding algorithms make use of lookup tables. We do not
know if this can be efficiently implemented in a quantum
algorithm. For example when using Grover to break AES,
the authors choose to explicitly calculate the AES SubBytes
step, because it was considered more ‘resource friendly’
than using a lookup table [3]. Thirdly, we did not analyse the
number of required qubits and quantum gates but just as-
sumed that it is feasible to build a quantum computer large
enough to run the algorithms. Especially for algorithms
such as BJMM, which may require a substantial amount of
memory, this may be problematic in practice. Finally, the
quantum attacks only allow for limited parallelization. With
Grover, running the algorithm on n quantum computers
only makes the algorithm run

√
n times faster. For these

reasons we consider our quantum security estimates as a
lower bound on the actual security.

For codes of our interest, with 3000 ≤ n ≤

TABLE 2
Comparison of Niederreiter parameters for 128-bit security against

quantum computers. The PQCRYPTO parameters can be found in [15].

EU PQCRYTPO New parameters

Parameters [n, k, d] [6960, 5413, 119] [5542, 4242, 100]

Public key size 1022 KiB 673 KiB

Quantum security 2153.1 2128.0

Best quantum attack Quantum Stern Quantum Stern

Classical security 2240.4 2198.7

Best classical attack BJMM BJMM

3000 4000 5000 6000 7000 8000 9000 10000

2000

4000

6000

8000

10000

n

k

B
in
a
ry
w
o
rk
fa
c
to
r
(l
o
g
a
ri
th
m
ic
)

50

100

150

200

Fig. 1. Binary workfactor for breaking a linear code of length n and rank k
with the best quantum information-set decoding attack. The parameters
of the smallest code for a certain complexity are given by the white line.

10000, the quantum Stern algorithm is the fastest quan-
tum information-set decoding algorithm. Basic quantum
information-set decoding is more expensive because it needs
more iterations, while the quantum MMT and quantum
BJMM algorithms need fewer iterations but have a high cost
per iteration and decoding qubits into suitable inputs for
the algorithm takes more operations. It is, however, possi-
ble that decoding qubits into suitable algorithm inputs is
actually less expensive than we assume. For example, some
algorithm parameters that should be random can actually
be set to a fixed value. This will reduce the probability
of success per iteration because iterations are no longer
independent from each other (see for example [21], section
5), but will decrease decoding cost. It is currently unclear
what the smallest possible decoding cost is when this is
taken into account. If we assume an absolute lower bound
on decoding cost, cdecode = 0 for all algorithms, the code we
suggest in Table 2 actually has a security of 127.94 bits.

3.3 Asymptotic complexity of quantum attacks

Since complexities of information-set decoding algorithms
are all exponential, their asymptotic running times are of-
ten compared in exponential factors of the code length n
only. In this asymptotic comparison polynomial factors are

7

64 96 128 160 192
0

512

1024

1536

2048

Bits of security

P
u
b
li
c
k
e
y
si
z
e
(K
B
)

Classical Quantum

PQCRYPTO recommendation

Fig. 2. Security vs. McEliece public key size.

suppressed, i.e. each of the algorithms has an α such that
the complexity is in Õ(2αn) [43]. We derive this complexity
from the non-asymptotic workfactor of each algorithm as
determined in Section 3.1. We use a variant of Stirling’s
approximation to approximate binomials:

log2

(

n

k

)

≈ nH

(

k

n

)

, (3)

where H(p) is the binary entropy function H(p) =
−p log2(p) − (1 − p) log2(1 − p). The complexity of decod-
ing an [n, k, d] linear code does not just depend on the
length of the code, but also on the rank k and minimum
distance d. For computing the asymptotic complexity, the
Gilbert-Varshamov bound is used to compute the maximum
possible minimum distance (and therefore maximum error-
correcting capacity, for which decoding is most difficult) for
a code of length n and rank k. We note that both random
codes and binary Goppa codes asymptotically meet this
bound [52]. Each attack (except Basic ISD) has a number
of parameters that need to be optimized in order to achieve
the lowest complexity. By optimizing these parameters for
several values of k we can find the value of k for which
decoding is most difficult. This gives the asymptotic worst-
case complexity of decoding as a function of n. The asymp-
totic complexities for FS and Ball collision are adapted from
[44] and [45], respectively.

A more elaborate description on how asymptotic com-
plexities of information-set decoding algorithms are com-
puted can be found in [43], section 1. We use bounded distance
decoding as opposed to full decoding, because in Niederreiter
the number of errors is limited by ⌊d−1

2 ⌋.
The asymptotic complexities of a number of information-

set decoding attacks are listed in Table 3. The classical
complexities are well-known (see for instance [43]). The
quantum complexities are computed in the same way as
the classical complexities, but with the original number of
iterations n replaced by π

4

√
n and with a higher cost per iter-

ation. Surprisingly, all quantum attacks asymptotically have
exactly the same complexity as the most basic information-

TABLE 3
Overview of information-set decoding attacks and their asymptotic

complexities.

Complexity

Name of attack Classical Quantum

Basic ISD, 1962 [39] 20.05752n 20.02876n

Stern’s algorithm, 1988 [41] 20.05563n 20.02876n

Finiasz and Sendrier (FS), 2009 [44] 20.05558n 20.02876n

Ball collision (BC), 2011 [45] 20.05558n 20.02876n

May et al. (MMT), 2011 [42] 20.05364n 20.02876n

Becker et al. (BJMM), 2012 [43] 20.04933n 20.02876n

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

n

k

C
o
m
p
le
x
it
y
e
x
p
o
n
e
n
t
α

Basic ISD Stern FS and BC

MMT BJMM Quantum ISD

Fig. 3. Asymptotic running time for different code rates n/k and different
information-set decoding attacks. Since the complexity of Finiasz and
Sendrier and Ball collision differ less than 0.1% from the complexity of
Stern’s algorithm, these graphs are overlapping.

set decoding attack. It turns out the optimal parameters for
the other attacks, for which the attacks have the lowest cost,
are all zero. This effectively reduces the more advanced
attacks to the most basic attack. This can be explained by
the fact that the advanced attacks reduce the number of
iterations at the cost of complicating each iteration. Grover,
on the other hand, only reduces the number of iterations and
does not reduce the cost of each iteration. Also, note that
the complexity of basic quantum ISD is exactly half of the
complexity of basic classical ISD. This is because the cost per
iteration for this algorithm is only polynomial, and therefore
the asymptotic complexity is completely determined by
the number of iterations. In Figure 3, the factor α in the
exponent of the asymptotic running times is shown as a
function of the code rate n

k . The complexities in Table 3
correspond to the maximum value of the complexities in
this graph.

4 INTEGRATING NIEDERREITER INTO OPENVPN

4.1 OpenVPN architecture

We now describe the OpenVPN protocol from a security
viewpoint. The exact security controls depend on many
configuration options. In this description, we focus on the

8

OpenVPN

client

OpenVPN

server

Multiplexed channels
over UDP or TCP

Control channel

Data channel

Symmetrically encrypted

Authenticated by HMAC

TLS 1.2 with
2048-bits RSA and DHE
Optional: tls-auth HMAC

Fig. 4. OpenVPN protocol from a security perspective

security mechanisms for OpenVPN when it is used with
‘key method 2’ (which is the default and preferred method in
OpenVPN 2.0+).

As outlined in Figure 4, a connection between an Open-
VPN client and OpenVPN server consists of two channels:
a control channel and a data channel.

Control channel – OpenVPN uses the control channel
for authentication of both the server and the client and to
negotiate keys for the data channel. A TLS session is set up
to authenticate both parties and provide a secure channel
to exchange keys for the data channel. OpenVPN supports
a wide range of TLS ciphers and security mechanisms.
It is currently recommended to use a Diffie-Hellman key
exchange to provide perfect forward secrecy [53]. The Diffie-
Hellman shares are signed with an RSA key. The keys for the
data channel are generated using the TLS PRF mechanism,
which is based on HMAC.

Data channel – The actual data packets which are sent
or received through the OpenVPN tunnel are transmitted
over the data channel. Two keys are used for encryption of
data; one for each direction. Two other keys are used for
authentication of packets in both directions.

These two channels are multiplexed and transmitted
over a single UDP or TCP stream. Since UDP is an unreliable
transport protocol but TLS requires a reliable transport pro-
tocol, an intermediate reliability layer is used for the control
channel. Optionally, the control channel can be protected
by the tls-auth directive, which specifies a pre-shared
key by which all incoming packets on the control channel
shall be authenticated (using an HMAC). This feature is
not essential for security but it makes it more difficult to
exploit software vulnerabilities in OpenVPN or the TLS
implementation. This is because unauthenticated packets
are discarded instead of being processed by the TLS library.

The reason for having a special data channel instead
of just using the TLS control channel for data as well is
motivated by performance. Since OpenVPN can tunnel TCP
packets, and TCP includes a reliability layer, tunneling TCP
over the TLS connection will stack two reliability layers.
The tunneled TLS connection will never experience any
packet loss and will not be able to set its window sizes
to correct values. After a timeout happens, packets will be
retransmitted even though this is not necessary. To elimi-
nate this performance problem, data is transmitted over an
unreliable channel using UDP. A combination of UDP and
TCP might have allowed for better performance, but was
probably considered unnecessary given the small size of a
regular handshake.

Table 4 shows an overview of the security of each Open-

(1) Send

regular key

exchange

(2) Send

regular key

exchange

Send client_random

(4) Generate

ciphertext

(5) Check

cookie

Send H(p), E(p ,)ks ks rc

(3) Check

cookie

Send server_random

Client has cookie

Client Server

(6) Inform

server

Client

does not

have

cookie

(7) Generate

public key

Server does not

know cookie

Send "no cookie known"

(8) Generate

ciphertext

Send new public key pk′
s

(9) Receive

ciphertext

Send E(p ,)k′
s rc

Server

knows

cookie

(11)

Generate

cookie

(10) Derive session keys

Send cookie pks,cookie(12) Store

cookie

Start

Preview https://www.draw.io/

1 of 1 07/27/2016 03:31 PM

Fig. 5. State diagram of the new key exchange protocol. In this diagram,
H is a cryptographically secure hash function and E(pks, rc) is an
encryption of message rc by public key pks. Messages inside a box
shall be signed by the sender if the protocol is not executed within an
authenticated channel.

VPN security mechanism assuming quantum algorithms
are usable in practice. Two components are broken in a
quantum world: the RSA-based mutual authentication and
Diffie-Hellman key exchange. Both of these components are
part of TLS. The fact that mutual authentication is insecure
in a quantum world will only be a problem once quantum
computers are actually available and can be used to forge
signatures. However, since an attacker without a quantum
computer can already store key exchanges in order to break
them when a quantum computer becomes usable, the key
exchange problem is much more urgent. For our research,
we will therefore focus on creating secure post-quantum key
exchange functionality in OpenVPN.

4.2 Extending OpenVPN

From the description above, the most sensible way for
extending the OpenVPN protocol with a post-quantum key
exchange is to change the control channel protocol. There
are multiple options to accomplish this:

1) Implementing an entirely new key method, ‘key
method 3’.

2) Changing the current TLS key exchange such that it
uses a Niederreiter key exchange instead of (elliptic
curve) Diffie-Hellman.

3) Performing a Niederreiter key exchange once the
TLS control channel is set up.

A disadvantage of the first method is that it requires du-
plicating much of the existing control channel logic, such
as client and server authentication and exchanging routing

9

TABLE 4
Summary of OpenVPN security in a post-quantum world. We consider a mechanism secure if it is not known to be broken by a quantum computer

in less than 2128 qubit operations.

Security mechanism Quantum security

TLS mutual authentication Broken. The RSA key of the root certificate can be factored using Shor’s
algorithm, allowing an attacker to create rogue certificates.

TLS key exchange Broken. Shor’s algorithm can compute the discrete logarithm of the Diffie-
Hellman shares, allowing an attacker to obtain the secret keys.

TLS symmetric encryption Secure if AES-256 is used for encryption.

Data channel encryption Secure if AES-256 is used as symmetric cipher.

Data channel authentication Secure if an HMAC with SHA-256 is used for authenticating messages.

tls-auth control channel authentication Secure since an HMAC with SHA-256 is used.

information. The second method may seem to be the most
elegant and efficient method, but in practice TLS has not
been designed for keys as large as Niederreiter’s public
keys. Although the TLS handshake protocol specifies a max-
imum message length of 16 MiB (224 bytes), the TLS records
that contain handshake messages actually have a maximum
length of 64 KiB (216 bytes) [54]. TLS extension messages
are also limited to 64 KiB. We note that there exist recent
proposals for post-quantum key exchanges in TLS [55], [56],
but these are using cryptosystems with smaller public keys.
A disadvantage of the third option regarding performance is
that actually two key exchanges are done: a Diffie-Hellman
key exchange to set up the TLS connection and then a
Niederreiter key exchange. With respect to security, this
is in fact an advantage, because an attacker will need to
break both key exchanges. In the unlikely event that the
Niederreiter cryptosystem is broken, this will not affect se-
curity against non-quantum adversaries. Also, a new control
channel is set up automatically after a predefined number
of seconds or transmitted packets to ensure forward secrecy.
By building upon the control channel we can achieve post-
quantum forward secrecy. Because this option allows most
flexibility to define a custom protocol we choose this method
to implement the new key exchange.

As explained in Section 2, Niederreiter can easily be
adapted into a key exchange protocol between Alice and
Bob in the following way: Alice constructs a Niederreiter
keypair and sends the public key to Bob. Bob constructs a
random error vector, encrypts it and sends the ciphertext
to Alice. After decryption, Alice and Bob both have the
same secret error vector. By supplying the error vector as
input to a key derivation function a shared key is obtained.
This is the basis of our key exchange protocol. In principle,
this protocol is vulnerable to adaptive chosen-ciphertext
attacks. If a protocol run for a non-decodable ciphertext
is distinguishable from a protocol run for a decodable ci-
phertext an attacker can iteratively decode a syndrome by
testing whether the syndrome is still decodable when the
syndrome of a single error is added. If the ciphertext is still
decodable, the new error actually nullified an existing error
and the attacker learns that the original ciphertext contains
an error at the same position. Persichetti [17] suggests to
solve this by continuing the protocol even if a ciphertext
is not decodable. The key should then be derived from
the unscrambled ciphertext. However, we use an alternative
solution by signing ciphertexts so an attacker cannot adapt

them. Since our protocol is run over TLS, all messages
are signed already anyway. This also protects against other
man-in-the-middle attacks, such as attacks replacing public
keys by forged ones.

4.3 Caching Niederreiter keys

With this approach, one challenge still remains. Since a large
Niederreiter public key has to be transferred before the
handshake can be finished, setting up a VPN connection
takes a lot of time. To solve this problem for most practical
situations, we have implemented a cache for the public key.
Once the handshake is finished the server will generate a
new public key and send it to the client. The client will store
the public key and use it for the next key exchange. We call
this cached public key a cookie. If during the next key ex-
change the server still has knowledge of the corresponding
private key, there is no need to send a large public key before
the handshake can be finished. In Figure 5, the new key
exchange protocol is described in more detail. This protocol
is executed over the control channel after the TLS connection
has been set up. First, in State (1) and (2), the regular key
exchange is done. If both the client and server already have
a cached key (which is very likely if they connected with
each other before), the client immediately uses the cached
public key to encrypt a random error vector in State (4). This
drastically speeds up the handshake. If either the server or
the client does not have knowledge of a previous key, a
new keypair will be generated by the server in State (7).
It will take some time to transfer the large public key, but
this is unavoidable and should only be necessary when the
client and server connect for the first time or when they
lose possession of their cached key. In State (10), the shared
secret is established. The data channel can then be used and
the key exchange is finished. Finally, the server generates a
new keypair and sends the new public key to the client. This
new keypair will be cached by the server and client so it can
be used for the next key exchange. In a way this is similar
to the TLS Cached Information Extension, which has been
published in July 2016 [57].

There are several reasons why we choose to do key
generation on the server. Firstly, the server is in a controlled
environment and therefore it is easier to arrange for secure
cookie storage on the server. Secondly, key generation is a
resource-demanding operation and servers often have more
processing power than clients, especially for mobile clients.
This does open an opportunity for denial-of-service attacks,

10

but since a keypair is generated only after the TLS control
channel is set up, only authenticated clients can carry out
this attack. Blocking it is as simple as per-user rate limiting.
Thirdly, clients often have more download bandwidth than
upload bandwidth. When the server generates the keypair
the public key has to be transferred from the server to the
client, which is often faster than the other way around.

4.4 Cookie mechanism robustness and security

The protocol automatically recovers from lost cookies by
generating a new keypair on the server. When the cookie
storage for the client is compromised by an attacker the key
exchange is still secure: in case the attacker obtains read
access, the attacker can only read public keys. If the attacker
obtains write access, the attacker can store new public keys,
but the server will not know these keys and therefore reject
ciphertexts encrypted by these keys. Because ciphertexts
are signed, an attacker cannot perform a man-in-the-middle
attack even when he has write access to the client cookie
storage. An attacker who obtains either read or write access
to server cookie storage will be able to break the security
of the key exchange. If the cookie cache is shared among
multiple servers, an attacker might conceivably be able to
remove cookies or restore cookies that have already been
used. Apart from being able to collect multiple ciphertexts
for a single public key because cookies can be made valid
multiple times, this does not affect the key exchange secu-
rity.

If either the server or the client has a compromised or
predictable random number generator, the shared secret
can be learned by an eavesdropper. This is because either
the private key or the random error vector will be known
by the attacker. We are not aware of a way to circumvent
this and believe this is acceptable. A single predictable
random number generator compromises the Diffie-Hellman
and RSA key exchange methods in TLS as well.

Although the presence of a cached private key on the
server arguably makes the forward secrecy no longer ‘per-
fect’, because potentially more than a single session can
be decrypted, the impact of an event in which an attacker
grabs hold of all secrets on the server is still very limited.
At most two sessions can be decrypted, namely the current
session and the next session. To limit the consequences of
a security breach, cookies are valid for a limited time. They
may be used only for a predefined number of times or be
valid within a certain time interval. The latter may be useful
for unstable connections with frequent reconnects. Because
we combine the Niederreiter key exchange with a regular
Diffie-Hellman key exchange, perfect forward secrecy is
preserved against non-quantum adversaries.

4.5 Storage

The decoding procedure needs knowledge of the inverse
of the scrambling matrix S, the Goppa polynomial and
the support vector. Since the scrambling matrix can be
computed from the Goppa polynomial and support vector,
a space-time trade-off is possible. The following options for
storing private keys exist:

1) Store only a seed for a CSPRNG. Storage size: 32
bytes (256 bits). It takes approximately 0.6 seconds
to load a private key.

2) Store only the Goppa polynomial and support vec-
tor. Storage size: 1

8m(t+n) bytes, or about 11 KiB for
our parameters. It takes approximately 0.4 seconds
to load a private key.

3) Store S−1 as well. Storage size: 1
8m(t+n+mt2), or

about 215 KiB for our parameters. The private key
is immediately available for use.

Because the best way to store private keys depends on how
much storage space is available and the number of clients,
we implement the last two options and allow the server
administrator to make a choice.

4.6 Implementational details and optimizations

We implement Patterson’s algorithm for decoding binary
Goppa codes [58]. Patterson’s algorithm is a specialized
algorithm which can correct up to ⌊d−1

2 ⌋ errors in code-
words of binary Goppa codes. In our implementation, we
have applied the following optimizations. We use lookup
tables for multiplications, inversions and square roots in
GF(2m). These operations only cost a single table lookup,
but may make the implementation vulnerable to cache-
timing attacks. Additions in GF(2m) are simply done by
xor-instructions. In the key generation procedure, we use
the algorithm from Shoup [59] for quickly constructing
a random Goppa polynomial, given a precomputed irre-
ducible polynomial of the same degree. Only about 29%
of Goppa code parity check matrices can be transformed
to standard form. Instead of trying again with a new code
when this transformation fails, we swap columns in the
parity check matrix and support vector such that the trans-
formation will be successful. In the decoding algorithm,
we use an optimization previously applied by Risse [60] to
quickly compute the square root of a polynomial modulo
the Goppa polynomial with only a single multiplication.
We use Horner’s method to evaluate the error polynomial.
There exist faster methods for finding all roots of the error
polynomial, such as the method using additive FFT’s which
is used by McBits [18].

5 PERFORMANCE IN PRACTICE

5.1 Benchmark setup

We evaluate the performance of OpenVPN with Niederre-
iter key exchange under different network conditions. We
connect two virtual machines in a virtual network and run
an OpenVPN server on one machine and an OpenVPN
client on the other machine. The host machine has an Intel
Core i5-3230M CPU. During the benchmarks, the CPU is
only the bottleneck for experiments with (nearly) ideal net-
work conditions. When packet drops or additional latency
are introduced, the network becomes the bottleneck. We use
the Linux kernel Queuing Disciplines Traffic Control, that
can be managed by the tc qdisc command, to control
networking characteristics. We evaluate OpenVPN’s perfor-
mance for packet losses between 0 and 2% for the classical
OpenVPN client and the OpenVPN client with Niederreiter

11

0.0% 0.5% 1.0% 1.5% 2.0%

0

5

10

15

20

25

30

Post-quantum OpenVPN (without cookie) Classical OpenVPN

Post-Quantum OpenVPN (with cookie)

TCP handshake (RTT 0ms) TCP handshake (RTT 50ms)

TCP handshake (RTT 100ms) TCP handshake (RTT 150ms)

Packet loss (%)

H
a

n
d

s
h

a
k
e

 t
im

e
 (

s
)

0

250

500

750

1000

≈

Fig. 6. The time of a full handshake for different packet loss rates. Each
data point represents the average of at least 100 runs, except the ‘Post-
quantum OpenVPN no cookie’ graph, which is averaged over 20 runs.
The TCP graph shows how post-quantum OpenVPN would perform for
various round-trip times when TCP would be used as reliability layer.

key exchange, with and without the cookie mechanism. The
results are displayed in Figure 6.

In Table 5, Niederreiter’s performance in practice is sum-
marized. The timing measurements are done on the same
machine on which the benchmarks are done, and are aver-
aged over 1.000 runs. The time for the initial setup consists
of constructing and precomputing operations in the GF(213)
finite field. This is only needed once. For key generation,
transforming the matrix into standard form takes most time:
approximately 0.2 seconds. For decoding, the most expen-
sive operation is evaluating the error polynomial, which
takes approximately 0.1 seconds. The rows under ‘random-
ness needed’ show the number of (pseudo)random bytes
needed to generate a key and generation of a shared secret.
This is not necessarily the same as the required amount of
entropy, since using 256 bits of entropy is sufficient if a
CSPRNG is used. The handshake time is the time needed
for a complete handshake, measured as the time interval
between starting the client and server and the moment the
OpenVPN tunnel is set up under ideal network conditions.

5.2 Analysis

From Figure 6, we can conclude that the handshake time for
post-quantum OpenVPN without a cookie explodes when
network conditions degrade. This is caused by the transfer
of the public key of almost 700 KiB and by OpenVPN’s
reliability layer for the control channel, which is very ineffi-
cient. The reliability layer has a very small window size of
8 packets, and only detects a packet loss when a timeout of
2 seconds occurs. Effectively this means every time a packet
loss happens, the handshake time is increased by 2 seconds.
A better reliability layer can significantly improve Open-
VPN’s performance for networks with high packet loss. For
comparison, we also show the OpenVPN handshake time
for the case where TCP would be used as reliability layer
for the control channel in Figure 6. We have not actually

TABLE 5
Niederreiter in practice: amount of time and randomness required for

cryptographic operations, key and ciphertext sizes and actual
handshake times.

[n, k, d] [5730, 4430, 100]

Time required for cryptographic operations

Initial setup 1.404 seconds

Key generation 0.632 seconds

Encryption 0.002 seconds

Decryption 0.185 seconds

Randomness needed

For key generation 22.8 KiB

For encryption 0.4 KiB

Size of cryptographic data structures

Public key size 703.0 KiB

Ciphertext length 163 bytes

Handshake times

Classical OpenVPN 2.64 seconds

Post-quantum OpenVPN (with cookie) 4.08 seconds

Post-quantum OpenVPN (without cookie) 5.78 seconds

implemented this, but simulated this scenario by sending
exactly the same packets over a TCP connection (taking into
account that each party can only respond when certain pack-
ets have been received) and added the cost of cryptographic
operations. We did so for various round-trip times, ranging
from 0 to 150 ms. As we can see from Figure 6, replacing
OpenVPN’s reliability layer by TCP drastically reduces the
handshake time when no cookie exists. Unfortunately, even
though OpenVPN supports running the entire OpenVPN
protocol over TCP, its internal reliability layer will then still
be used.

On the other hand, the cookie-mechanism, which ex-
changes a shared secret using a public key previously sent,
works quite well. It is only about 1.6 seconds slower than
classical OpenVPN. This is due to the time initial setup,
encryption and decryption takes. The cost of initial setup
only applies to the server, and only once for all clients,
so in practice the difference in handshake time between
classical OpenVPN and OpenVPN with a cookie is much
lower. Because a ciphertext is only 163 bytes and only few
other additional messages are needed for the post-quantum
handshake, the impact of packet loss is very comparable
with classical OpenVPN. However, when the handshake
is finished, it is still needed to transfer a large public
key for the next key exchange. This may still prevent this
solution from being suitable for devices that need to do
frequent quantum-secure key exchanges with very limited
bandwidth or a low data cap. We also note that the current
implementation of OpenVPN lacks support for multithread-
ing. Therefore, the data channel cannot be used during key
generation and public key transfer. Because Niederreiter
keys are completely independent from clients and specific
connections, it is possible to optimize key generation by
generating keys beforehand in a separate thread for all
clients and maintaining a ‘pool’ of Niederreiter keypairs on
the server.

12

6 CONCLUSIONS AND RECOMMENDATIONS

Our main contributions are a more careful analysis of
quantum computer attacks on McEliece, resulting in much
smaller parameters providing 128-bit security against quan-
tum computers, a public implementation of McEliece in
an open source product and a way to cope with the large
public keys in practice. We have shown that although the
complexities of quantum information-set decoding attacks
are asymptotically exactly the same, non-asymptotically the
binary workfactor is different for each algorithm and the
quantum information set decoding variant of Stern’s algo-
rithm is the most efficient quantum decoding algorithm cur-
rently known. We demonstrated and evaluated the usability
of McEliece in practice. We conclude that in ideal network
conditions McEliece can be used in practical applications
to establish a shared secret key. In networks with high
packet loss, OpenVPN’s inefficient reliability mechanism is
unsuitable for sending large public keys.

We recommend to replace OpenVPN’s reliability layer
by a more efficient one, such as TCP. We also recommend to
estimate the number of logical qubit cycles and gate opera-
tions more precisely, taking overhead from quantum error
correction and transforming the circuit into a reversible
circuit into account.

APPENDIX A

NON-ASYMPTOTIC COST OF QUANTUM

INFORMATION-SET DECODING ALGORITHMS

In this appendix, we list the exact cost of several quantum
information-set decoding algorithms. For algorithms that
have additional parameters, these parameters are optimized
to minimize the cost of the algorithm. The final workfactor
can be computed using Equation 2 on page 5. The cost of
transforming a bitstring of length log2

(n
k

)

into a vector of
length n and weight k is defined as cselect(k, n) = n2 log2 n.
For a description on how to derive these formulas, see
Section 3.1.

A.1 Quantum information-set decoding

The basic information-set decoding algorithm does not have
any parameters which can be optimized. The only param-
eter that needs to be decoded in each iteration of Grover’s
algorithm is the selection of k out of n columns.

psuccess =

(n−d
k

)

(n
k

) , cinv =
1

2
k3 + (n− k)k2,

cdecode = cselect(k, n), cit = k.

A.2 Quantum Stern’s algorithm

Stern’s algorithm has two parameters: l and m. In each
iteration of Grover’s algorithm, the following three items
need to be decoded from the input qubits: the selection of
n − k out of n pivot columns, a partition of k integers into
two sets X and Y , and a set J containing a selection of l
indices out of n− k options.

psuccess =

(d
2m

)(n−d
k−2m

)(2m
m

)(n−k−d+2m
l

)

4m
(n
k

)(n−k
l

) ,

cdecode = cselect(n− k, n) + k + cselect(l, n− k),

cit = 2lm

(

k
2

m

)

+ 2m(n− k)

(

k
2

m

)2

2−l,

cinv =
1

2
(n− k)3 + k(n− k)2.

A.3 Quantum MMT’s algorithm

MMT’s algorithm has four parameters: m, l1, l2 and |A|.
The input of this algorithm is a selection of (n − k − l1)
out of n columns and a selection of sets E1,2,3,4, containing
((k+l1)/2

m/4

)

vectors of weight 1
4m and length k + l1. Sets E1,2

have disjoint supports, as do sets E3,4.

psuccess = 1−
(

1− ε 2l1
)|E|

,

cinv =
1

2
(n− k − l)3 + (k + l)(n− k − l)2,

cdecode =cselect(n− k − l1, n)

+2

(

cselect

(

k + l1
2

, k + l1

)

+ 2

(

k+l1
2
m
4

)

cselect

(

m

4
,
k + l1

2

)

)

cit = |A|(n− k)
(

4L0 + 2L2
0 2

−l2 + 2L4
0 2

−l1−l2
)

,

ε =

(n−k−l1
d−m

)

min
(

2n−k,
(n
d

)) , L0 =

(

k+l1
2
m
4

)

,

|E| = |A|L4
0 2

−l1−l2 .

A.4 Quantum BJMM’s algorithm

The BJMM algorithm has six parameters: m, l, r1, r2, e1 and
e2. The inputs that need to be decoded for each iteration of
Grover’s algorithm are a selection of (n − k − l) out of n

columns, and 8 sets E1···8 each containing
((k+l)/2

p2/2

)

vectors

of weight 1
2p2 and length k + l. Sets E2i−1 and E2i have

disjoint supports.

psuccess = 1−
(

1− ε 2l
)S0

,

cinv =
1

2
(n− k − l)3 + (k + l)(n− k − l)2,

cit = (n− k)(8S3 + 4C3 + 2C2 + 2C1),

cdecode =cselect(n− k − l, n)

+4

(

cselect

(

k + l

2
, k + l

)

+ 2

(

k+l
2
p2

2

)

cselect

(

p2
2
,
k + l

2

)

)

ε =

(n−k−l
d−m

)

min
(

2n−k,
(n
d

)) , m1 =
m

2
+ e1, m2 =

m1

2
+ e2,

µ1 =

(m1

e1

)(k+l−m1

m1−e1

)

(k+l
m1

) , µ2 =

(m2

e2

)(k+l−m2

m2−e2

)

(k+l
m2

) ,

13

S0 = min

(

µ1C1, 2
−l

(

k + l

m

))

,

S1 = min

(

µ2C2, 2
−r1−r2

(

k + l

m1

))

,

S2 = C3 = 2−r2S2
3 , S3 =

(

k+l
2

m2

2

)

,

C1 = 2r1+r2−l S2
1 , C2 = 2−r1 S2

2 .

REFERENCES

[1] OpenVPN Technologies, Inc., “What is OpenVPN?” https:
//openvpn.net/index.php/open-source/333-what-is-openvpn.
html, 2016, accessed: 08-01-2016.

[2] D. J. Bernstein, “Introduction to post-quantum cryptography,” in
Post-quantum cryptography. Springer, 2009, pp. 1 – 14.

[3] M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt,
“Applying Grover’s Algorithm to AES: Quantum Resource Esti-
mates,” in Post-Quantum Cryptography: 7th International Workshop,
PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings,
vol. 9606. Springer, 2016, p. 29.

[4] M. Amy, O. Di Matteo, V. Gheorghiu, M. Mosca, A. Parent, and
J. Schanck, “Estimating the cost of generic quantum pre-image
attacks on SHA-2 and SHA-3,” arXiv preprint arXiv:1603.09383,
2016.

[5] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner,
and D. Smith-Tone, “Report on Post-Quantum Cryptography,”
National Institute of Standards and Technology Internal Report, feb
2016.

[6] M. Mariantoni. (2014, oct) Building a Superconducting
Quantum Computer. https://www.youtube.com/watch?v=
wWHAs--HA1c.

[7] N. Xu, J. Zhu, D. Lu, X. Zhou, X. Peng, and J. Du, “Quantum
Factorization of 143 on a Dipolar-Coupling Nuclear Magnetic
Resonance System,” Phys. Rev. Lett., vol. 108, p. 130501,
Mar 2012. [Online]. Available: http://link.aps.org/doi/10.1103/
PhysRevLett.108.130501

[8] N. S. Dattani and N. Bryans, “Quantum factorization of 56153 with
only 4 qubits,” arXiv preprint arXiv:1411.6758, 2014.

[9] R. J. McEliece, “A public-key cryptosystem based on algebraic
coding theory,” DSN progress report, vol. 42, no. 44, pp. 114 – 116,
1978.

[10] H. Dinh, C. Moore, and A. Russell, “McEliece and Niederreiter
Cryptosystems That Resist Quantum Fourier Sampling Attacks,”
in Annual Cryptology Conference. Springer, 2011, pp. 761–779.

[11] D. J. Bernstein, “Grover vs. McEliece,” in Post-Quantum Cryptogra-
phy. Springer, 2010, pp. 73 – 80.

[12] E. R. Berlekamp, R. J. McEliece, and H. C. Van Tilborg, “On the in-
herent intractability of certain coding problems,” IEEE Transactions
on Information Theory, vol. 24, no. 3, pp. 384 – 386, 1978.

[13] H. Niederreiter, “Knapsack-type cryptosystems and algebraic cod-
ing theory,” PROBLEMS OF CONTROL AND INFORMATION
THEORY, vol. 15, no. 2, pp. 159 – 166, 1986.

[14] Y. X. Li, R. H. Deng, and X. M. Wang, “On the equivalence of
McEliece’s and Niederreiter’s public-key cryptosystems,” IEEE
Transactions on Information Theory, vol. 40, no. 1, pp. 271 – 273,
1994.

[15] D. Augot, L. Batina, D. J. Bernstein, J. Bos, J. Buchmann, W. Cas-
tryck, O. Dunkelman, T. Güneysu, S. Gueron, A. Hülsing et al.,
“Initial recommendations of long-term secure post-quantum sys-
tems,” 2015.

[16] V. Shoup, “A proposal for an ISO standard for public key encryp-
tion (version 2.1),” IACR E-Print Archive, vol. 112, 2001.

[17] E. Persichetti, “Improving the efficiency of code-based cryptogra-
phy,” Ph.D. dissertation, Department of Mathematics, University
of Auckland, 2012.

[18] D. J. Bernstein, T. Chou, and P. Schwabe, “McBits: fast constant-
time code-based cryptography,” in Cryptographic Hardware and
Embedded Systems-CHES 2013. Springer, 2013, pp. 250 – 272.

[19] D. J. Bernstein, T. Lange, and C. Peters, “Wild McEliece,” in Selected
Areas in Cryptography. Springer, 2011, pp. 143 – 158.

[20] A. Canteaut and N. Sendrier, “Cryptanalysis of the origi-
nal McEliece cryptosystem,” in Advances in Cryptology - ASI-
ACRYPT’98. Springer, 1998, pp. 187 – 199.

[21] D. J. Bernstein, T. Lange, and C. Peters, “Attacking and defend-
ing the McEliece cryptosystem,” in Post-Quantum Cryptography.
Springer, 2008, pp. 31 – 46.

[22] R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. Barreto, “MDPC-
McEliece: New McEliece variants from moderate density parity-
check codes,” in Information Theory Proceedings (ISIT), 2013 IEEE
International Symposium on. IEEE, 2013, pp. 2069 – 2073.

[23] Y. Wang, “Random linear code based public key encryption
scheme rlce,” 2016.

[24] V. M. Sidelnikov and S. O. Shestakov, “On insecurity of cryp-
tosystems based on generalized Reed-Solomon codes,” Discrete
Mathematics and Applications, vol. 2, no. 4, pp. 439 – 444, 1992.

[25] E. M. Gabidulin, A. Paramonov, and O. Tretjakov, “Ideals over
a non-commutative ring and their application in cryptology,” in
Advances in Cryptology - EUROCRYPT’91. Springer, 1991, pp. 482
– 489.

[26] E. Gabidulin, “On public-key cryptosystems based on linear
codes,” in In Proc. of 4th IMA Conference on Cryptography and Coding
1993, Codes and Ciphers. IMA Press, 1995.

[27] J. Gibson, “Severely denting the Gabidulin version of the McEliece
public key cryptosystem,” Designs, Codes and Cryptography, vol. 6,
no. 1, pp. 37 – 45, 1995.

[28] K. Gibson, “The security of the Gabidulin public key cryptosys-
tem,” in Advances in Cryptology - EUROCRYPT’96. Springer, 1996,
pp. 212 – 223.

[29] V. M. Sidelnikov, “A public-key cryptosystem based on binary
Reed-Muller codes,” Discrete Mathematics and Applications, vol. 4,
no. 3, pp. 191 – 208, 1994.

[30] L. Minder and A. Shokrollahi, “Cryptanalysis of the Sidelnikov
cryptosystem,” in Advances in Cryptology - EUROCRYPT 2007.
Springer, 2007, pp. 347 – 360.

[31] P. Gaborit, “Shorter keys for code based cryptography,” in Proceed-
ings of the 2005 International Workshop on Coding and Cryptography
(WCC 2005), 2005, pp. 81 – 91.

[32] A. Otmani, J.-P. Tillich, and L. Dallot, “Cryptanalysis of two
McEliece cryptosystems based on quasi-cyclic codes,” Mathematics
in Computer Science, vol. 3, no. 2, pp. 129 – 140, 2010.

[33] M. Baldi and F. Chiaraluce, “Cryptanalysis of a new instance of
McEliece cryptosystem based on QC-LDPC codes,” in Information
Theory, 2007. ISIT 2007. IEEE International Symposium on. IEEE,
2007, pp. 2591 – 2595.

[34] A. Couvreur, A. Otmani, and J.-P. Tillich, “Polynomial time attack
on wild McEliece over quadratic extensions,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2014, pp. 17–39.

[35] J.-C. Faugere, L. Perret, and F. De Portzamparc, “Algebraic Attack
against Variants of McEliece with Goppa Polynomial of a Special
Form,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2014, pp. 21–41.

[36] D. J. Bernstein, T. Lange, and C. Peters, Wild McEliece
Incognito. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 244–254. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-25405-5 16

[37] R. Dowsley, J. Müller-Quade, and A. C. Nascimento, “A CCA2
secure public key encryption scheme based on the McEliece as-
sumptions in the standard model,” in Topics in Cryptology - CT-RSA
2009. Springer, 2009, pp. 240 – 251.

[38] J.-C. Faugere, V. Gauthier-Umana, A. Otmani, L. Perret, and J.-P.
Tillich, “A distinguisher for high-rate McEliece cryptosystems,”
IEEE Transactions on Information Theory, vol. 59, no. 10, pp. 6830 –
6844, 2013.

[39] E. Prange, “The use of information sets in decoding cyclic codes,”
Information Theory, IRE Transactions on, vol. 8, no. 5, pp. 5 – 9, 1962.

[40] P. J. Lee and E. F. Brickell, “An observation on the security of
McEliece’s public-key cryptosystem,” in Advances in Cryptology -
EUROCRYPT’88. Springer, 1988, pp. 275 – 280.

[41] J. Stern, “A method for finding codewords of small weight,” in
Coding theory and applications. Springer, 1988, pp. 106 – 113.

[42] A. May, A. Meurer, and E. Thomae, “Decoding Random Linear
Codes in Õ(20.054n),” in Advances in Cryptology - ASIACRYPT
2011. Springer, 2011, pp. 107 – 124.

[43] A. Becker, A. Joux, A. May, and A. Meurer, “Decoding random
binary linear codes in 2n/20: How 1 + 1 = 0 improves information

https://openvpn.net/index.php/open-source/333-what-is-openvpn.html
https://openvpn.net/index.php/open-source/333-what-is-openvpn.html
https://openvpn.net/index.php/open-source/333-what-is-openvpn.html
https://www.youtube.com/watch?v=wWHAs--HA1c
https://www.youtube.com/watch?v=wWHAs--HA1c
http://link.aps.org/doi/10.1103/PhysRevLett.108.130501
http://link.aps.org/doi/10.1103/PhysRevLett.108.130501
http://dx.doi.org/10.1007/978-3-642-25405-5_16
http://dx.doi.org/10.1007/978-3-642-25405-5_16

14

set decoding,” in Advances in Cryptology - EUROCRYPT 2012.
Springer, 2012, pp. 520 – 536.

[44] M. Finiasz and N. Sendrier, “Security bounds for the design
of code-based cryptosystems,” in Advances in Cryptology - ASI-
ACRYPT 2009. Springer, 2009, pp. 88 – 105.

[45] D. J. Bernstein, T. Lange, and C. Peters, “Smaller decoding
exponents: ball-collision decoding,” in Advances in Cryptology -
CRYPTO 2011. Springer, 2011, pp. 743 – 760.

[46] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing. ACM, 1996, pp. 212 – 219.

[47] C. Zalka, “Grover’s quantum searching algorithm is optimal,”
Physical Review A, vol. 60, no. 4, p. 2746, 1999.

[48] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight bounds on
quantum searching,” arXiv preprint quant-ph/9605034, 1996.

[49] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani,
“Strengths and weaknesses of quantum computing,” SIAM journal
on Computing, vol. 26, no. 5, pp. 1510 – 1523, 1997.

[50] Y. Hamdaoui and N. Sendrier, “A Non Asymptotic Analysis of
Information Set Decoding,” IACR Cryptology ePrint Archive, vol.
2013, p. 162, 2013.

[51] J.-B. Fischer and J. Stern, “An efficient pseudo-random generator
provably as secure as syndrome decoding,” in Advances in Cryp-
tology - EUROCRYPT’96. Springer, 1996, pp. 245 – 255.

[52] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes.
Cambridge university press, 2010.

[53] OpenVPN Technologies, Inc., “OpenVPN Howto,”
https://openvpn.net/index.php/open-source/documentation/
howto.html, 2016, accessed: 28-07-2016.

[54] T. Dierks and E. Rescorla, “RFC 5246: The Transport Layer Security
(TLS) Protocol Version 1.2,” Tech. Rep., August 2008.

[55] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum
key exchange for the TLS protocol from the ring learning with
errors problem,” in 2015 IEEE Symposium on Security and Privacy.
IEEE, 2015, pp. 553–570.

[56] J. M. Schanck, W. Whyte, and Z. Zhang, “Quantum-Safe Hybrid
(QSH) Ciphersuite for Transport Layer Security (TLS) version 1.3
(draft),” IETF, April 2016.

[57] S. Santesson and H. Tschofenig, “Transport Layer Security (TLS)
Cached Information Extension,” IETF, July 2016.

[58] N. Patterson, “The algebraic decoding of Goppa codes,” IEEE
Transactions on Information Theory, vol. 21, no. 2, pp. 203–207, 1975.

[59] V. Shoup, “Fast construction of irreducible polynomials over
finite fields,” Journal of Symbolic Computation, vol. 17, no. 5,
pp. 371–391, 1994. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S074771718471025X

[60] T. Risse, “How SAGE helps to implement Goppa Codes and the
McEliece Public Key Crypto System,” Ubiquitous Computing and
Communication Journal, UbiCC, ISSN, vol. 8424, 1992.

https://openvpn.net/index.php/open-source/documentation/howto.html
https://openvpn.net/index.php/open-source/documentation/howto.html
http://www.sciencedirect.com/science/article/pii/S074771718471025X
http://www.sciencedirect.com/science/article/pii/S074771718471025X

	Introduction
	A new threat: quantum computers
	A new defense: post-quantum cryptography
	Our contribution
	Outline

	Review of McEliece and Niederreiter
	Codes suitable for McEliece
	Attacks on Niederreiter

	Selecting parameters for Niederreiter
	Non-asymptotic complexity of quantum attacks
	Optimizing parameters for 128-bit quantum security
	Asymptotic complexity of quantum attacks

	Integrating Niederreiter into OpenVPN
	OpenVPN architecture
	Extending OpenVPN
	Caching Niederreiter keys
	Cookie mechanism robustness and security
	Storage
	Implementational details and optimizations

	Performance in practice
	Benchmark setup
	Analysis

	Conclusions and recommendations
	Appendix A: Non-asymptotic cost of quantum information-set decoding algorithms
	Quantum information-set decoding
	Quantum Stern's algorithm
	Quantum MMT's algorithm
	Quantum BJMM's algorithm

	References

