
StockWatcher 2.0:

Using Text Analysis to Predict Stock Market

Trends

Alex Brojba-Micu

289585ab@student.eur.nl

Master Thesis

Department of Economics and Informatics

Erasmus School of Economics

Erasmus University Rotterdam

Supervisor: Dr. Flavius Frasincar

Co-supervisor: Dr. Viorel Milea

March 12, 2013

Acknowledgements

I am grateful for all the support I have received whilst researching and

writing up this thesis. Of course I could not have done this work all alone,

therefore I will gratefully thank all the people helping me.

First my former teacher and now thesis supervisor, Flavius Frasincar, for the

valuable discussions and input. Furthermore, his revisions and corrections

were crucial in creating a proper master thesis. And of course Viorel Milea,

my thesis co-supervisor, who asked crucial questions which resulted in a more

extensive and better theoretical background for my thesis. I am thankful to

both for their long patience and support.

But one should never forget the people who had to deal with me during

those months of work and exhaustion, especially my girlfriend Oana, which

supported me every step of the way, and indulged in my mental absence.

i

Abstract

In this thesis we present a new application, StockWatcher 2.0, which pre-

dicts the stock price for listed companies by analyzing events in news items,

with the assistance of Natural Language Processing. This is accomplished

by applying a series of algorithms on news articles, in order to identify rel-

evant information. The thesis first discusses several similar projects, by

explaining their approach and results. We continue with a theoretical back-

ground on stock prediction, and a summary of Natural Language Processing

techniques which are required for our application. Then we select the best

performing techniques, and elaborate the development of our application.

StockWatcher has been tested with an unique data set, producing very en-

couraging results. The application is able to predict stock prices for listed

companies by analyzing news items regarding the company. The results are

two-fold: BUY/SELL signal precision of 53.3% and actual investment excess

returns (compared to the NASDAQ index return for the same time period)

of 6.42% for the period of an year.

Keywords: natural language processing, word sense disambiguation, stock

price prediction

ii

Contents

1 Introduction 2

1.1 Background . 2

1.1.1 Natural Language Processing 3

1.2 Goals . 4

1.2.1 NASDAQ . 5

1.3 Methodology . 5

1.4 Structure . 7

2 Related Work 8

2.1 Introduction . 8

2.2 Warren . 8

2.3 OASYS . 10

2.4 AAC-based sentiment analysis 13

2.5 TOWL . 14

2.6 Other related work . 16

2.7 Discussion . 17

2.8 Summary . 17

iii

CONTENTS iv

3 Natural language processing 19

3.1 Introduction . 19

3.2 Stock Markets . 19

3.2.1 Stock Market prediction theories 20

3.2.2 Stock price relation to news articles 21

3.3 Natural Language Processing 22

3.3.1 Part-of-speech taggers 24

3.3.2 Morphological analysis 27

3.4 Summary . 30

4 Word sense disambiguation 32

4.1 Introduction . 32

4.2 History . 32

4.2.1 Applications of WSD 33

4.3 Methods . 34

4.3.1 Corpus-based approaches 35

4.3.2 Knowledge-based approaches 36

4.4 WSD approaches based on WordNet 38

4.4.1 Path-based similarity 40

4.4.2 Information content similarity 42

4.4.3 Graph-based similarity 44

4.4.4 Discussion . 48

4.5 Conclusion . 51

CONTENTS v

5 Architecture 54

5.1 Introduction . 54

5.2 StockWatcher . 54

5.3 Document preprocessing and article rating 56

5.3.1 Event recognition . 58

5.3.2 Event training . 62

5.3.3 Article rating . 64

5.4 Conclusion . 65

6 Validation 67

6.1 Validation setup . 67

6.2 Results . 70

6.3 Computation time . 72

6.4 Discussion . 73

7 Conclusion 75

7.1 Future work . 76

A Events 78

B Training results 81

C Validation results 84

List of Figures

1.1 News article from Bloomberg.com 4

1.2 StockWatcher 2.0 framework 6

3.1 The intended natural language process for news articles . . . 23

3.2 The WordNet morphological analyzer 30

4.1 Taxonomy tree from WordNet 43

4.2 An example word sense disambiguation graph 45

4.3 A representation of all types of word sense disambiguation,

organized by type . 49

4.4 All similarity measure methods based on WordNet, organized

by type . 51

5.1 StockWatcher 2.0 conceptual model of the information flow. . 55

5.2 StockWatcher 2.0 NLP pipeline. 56

vi

List of Tables

2.1 Differences between existing prediction applications 17

3.1 WordNet recognized suffixes and suggested endings 29

4.1 Noun relationships in WordNet 39

4.2 Verb relationships in WordNet 39

4.3 Comparison between different similarity measure methods . . 50

6.1 StockWatcher 2.0 - BUY/SELL precision for company specific

event weights. 71

6.2 StockWatcher 2.0 - BUY/SELL precision for average event

weights. 71

6.3 StockWatcher 2.0 - Excess returns for company specific event

weights, expressed in percentages. 71

6.4 StockWatcher 2.0 - Excess returns for average event weights,

expressed in percentages. 72

6.5 StockWatcher 2.0 - Average computation time per article in

seconds . 72

1

Chapter 1

Introduction

1.1 Background

Being able to predict the evolution of financial markets is the key element

for brokers and private individuals to earn money. This prediction process

has been however very challenging, as the financial markets have a complex

behavior. There are several distinguishable methods to approach this prob-

lem, mostly based on the analysis of structured numerical information. The

most employed analysis and prediction method is based on statistical tools,

where the focus is on previous price evolution. A second approach however,

based on text information, is earning a higher degree of popularity the past

years. The underlying concept behind it is that the prediction of the stock

price for certain companies is possible by analyzing news items concerning

that company. According to Ng and Fu [2003], stock prices are influenced by

a contribution of key factors from several sources: from news items directly

released by the companies to news items concerning the global economy and

its trends.

The Web is the only medium where news forecasting is not restrained by

time and place. Unlike printed media or television programs, on the Web

news can be publicized as fast as an item becomes news and does not have

to wait until it is being printed or broadcasted. At the same time more and

more people have access to the Web, therefore news on the Web become more

2

CHAPTER 1. INTRODUCTION 3

accessible. News websites provide RSS-feeds facilitating the public to remain

up-to-date about any topic of interest. Meanwhile, the new technological

developments facilitating fast desktop computers for individual users, as well

as the evolution in the field of knowledge discovery makes it possible to data

mine the news items for critical information in real-time.

This form of knowledge extraction, also referred to as data mining, intends

to employ computers and specific software on large amounts of digital data

in order to find interesting patterns and relationships within the data. With

the growth of the Web an increasing amount of textual data is available.

This evolution has led the process of knowledge discovery to be expanded

to text mining, where the focus lies on unstructured text data, as shown by

Hearst [1997]. With the use of text mining techniques, aided by natural lan-

guage tools, it becomes possible to extract relevant information from natural

language text documents, and to use this information for other computer-

based applications. In the context of this thesis, by creating an interaction

between the discovery of key elements in textual data it becomes possible to

build prediction models for the stock price towards a focus company. News

items concerning certain companies can have several effects on the stock

price towards that company (positive, negative and neutral). The key is to

correctly identify these news items and extract the relevant information. For

example, we would like to predict the influence of the news article illustrated

in Figure 1.1 on the concerned companies. On the day this news item was

published online, the stock prices of Delta Air and Northwest risen by 3.50%

and 2.00%, respectively.

1.1.1 Natural Language Processing

Natural Language Processing (NLP) is a field created for the understanding

of the natural human language. With the use of NLP techniques develop-

ers are trying to teach machines what we understand so easy, our human

languages, according to Chowdhury [2003]. By natural language we mean a

usual type of language generally used by humans. That excludes man-made

languages such as Java, which falls in the realm of programming languages.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: News article from Bloomberg.com

As a result, when we talk about NLP, we are addressing the efforts of using

computers to process natural languages. NLP has three distinctive cate-

gories according to Jurafsky and Martin [2000], namely: speech, grammar

and meaning. Our focus is only on grammar and meaning.

Most languages do have rules that need to be obeyed. These rules apply

to the structure of the words (morphology), as well as to the structure of

the sentences (syntax). In this way we have a generalized consensus on

how to write a well-structured text, so that the reader is not confronted

with trivial problems about the part-of-speech of a word or the sentence

structure. This represents the grammar category. The second category of

our interest is meaning. This category can be divided as well into semantics

and pragmatics. While semantics is referring to the meaning of words and

consequently the meaning of sentences, pragmatics is about what did the

speaker or writer intended to express. Our focus in this case is to find the

meaning behind the words.

1.2 Goals

We intend to employ the available NLP techniques, as discussed above,

on financial market related news items representing companies from the

NASDAQ-100 available on Internet RSS-feeds. The purposes of this process

CHAPTER 1. INTRODUCTION 5

it to first let our system identify key concepts which can influence the stock

price concerning a given company. This would enable us to predict how

future news items will impact the stock price. The main research question

of the thesis is:

• Is it possible to predict stock prices for listed companies by analyzing

events in news items?

The subquestions of our main research question are:

• What are the available methods for disambiguating words?

• How can we predict stock prices by making use of textual news articles?

• How reliable is a natural language processing technique involving event

recognition in making stock price predictions?

1.2.1 NASDAQ

The NASDAQ stock exchange is one of the largest electronic financial market

in the world. Over 3200 companies are listed and on average there are more

shares traded on NASDAQ than any other market in the U.S. Furthermore,

a stock market index was created for the 100 largest companies that are

listed on NASDAQ, named NASDAQ-1001. Every year a rebalancing of the

index takes place, where companies are delisted (merging, bankruptcy or

declining market value of the company) with other companies taking the

spot. Moreover, several large non-U.S. companies are also included in the

NASDAQ-100.

1.3 Methodology

The first step in our research is a thorough literature study in this field.

The focus is on existing projects with a degree of resemblance to ours. This

1NASDAQ - http://dynamic.nasdaq.com/dynamic/nasdaq100activity.stm

CHAPTER 1. INTRODUCTION 6

process will help us determine what has already been researched in regards

to our own project and might even provide benchmarks for future validation

of our software.

To accomplish our goal, the first step in our thesis is to design an application

that is able to learn the importance of events. This is achieved by collecting

news items regarding several companies on a time frame of several months.

Each news item is rated by the difference between the opening and closing

stock price for the subject company on the date of the news item appearence.

Afterwards, we compare our own event concept list to the rated news items,

and the application will learn what is the impact of the event on the stock

price.

Certain requirements can already be specified for our application and re-

search. First of all, a list has to be created with financial market relevant

events. Extensive literature review and previous projects on this theme

should provide insights for this problem. Furthermore, a reliable news ser-

vice for the news items has to be identified. For this matter we look at the

RSS-feeds of big financial websites, such as Google Finance2, MSN Money3

and Yahoo! Finance4.

Figure 1.2: StockWatcher 2.0 framework

The second step of the research is to find if the system is able to predict the

stock price given previously unseen news items. To validate this process,

a second time frame is created. In this time frame a new batch of news

2Google - http://finance.google.com
3Microsoft - http://moneycentral.msn.com/home.asp
4Yahoo - http://finance.yahoo.com/

CHAPTER 1. INTRODUCTION 7

items will be collected. Our system will then process these news items and

produce a stock price based on the identified events. This result will then be

compared to to the actual stock price changes. In Figure 1.2 a conceptual

model of our system is illustrated. The rectangles represent processes, which

have documents or data as input / output. First a prediction model is

build, as described above. Once this process is finished, this model is able

to analyze news items and give a prediction concerning the stock price for

the company.

1.4 Structure

In Chapter 2 of this thesis we discuss previous work work related to our field

of interest. Relevant results and conclusions of other authors are pointed

out for future reference. We also emphasize the limitations of similar ap-

proaches. In Chapter 3 we present the first part of our methodology. A

technique and software survey for part of speech taggers and morphological

analyzers is conducted. The survey enables us to select the necessary tools

and techniques in order to create our application. Furthermore, in Chap-

ter 4 we continue with the survey by comparing the available word sense

algorithms.

Once the proper tools and techniques have been identified, in Chapter 5

we describe how they are used in our application. This chapter includes

conceptual models and algorithms presented in pseudo-code. In Chapter 6

we test the developed application on our own news article corpus. A detailed

analysis of the results, including precision, is presented. In Chapter 7 we

present our conclusions and give recommendations for future work.

Chapter 2

Related Work

2.1 Introduction

In this chapter we investigate a number of tools and techniques which pre-

dict human sentiment towards companies and their stock price based on

news items. We highlight the main characteristics and features of these ap-

plications, together with the obtained results as mentioned by the authors.

We also give attention to the main differences between our goals and these

applications.

2.2 Warren

Warren, as discussed by Seo et al. [2002], is an ensemble of intelligent agents,

designed to assist humans in financial markets. The agents help users to

track stock prices, give performance assistance, earning summaries and risks

concerning companies of interest in the user’s portfolio. One of the tasks

performed by the agents is to analyze news items concerning related compa-

nies. The news analyzing agent classifies news items in one of the following

five categories:

• Good News articles which show positive evidences of the company’s

8

CHAPTER 2. RELATED WORK 9

financial status explicitly, e.g., “the shares of ABC Company rose 2

percent on the NASDAQ to $24.”

• Good, uncertain News articles which refer to predictions of fu-

ture profitability, and forecasts, e.g., “ABC Company predicts fourth-

quarter earnings will be high.”

• Neutral News articles which did not explicitly mention anything about

the financial well-being of the company, e.g., “ABC and XYZ Inc. an-

nounced plans to develop an industry initiative.”

• Bad, uncertain News articles which refer to predictions of future

losses, or no profitability, e.g., “ABC warned Tuesday that fourth-

quarter results could fall short in expectations.”

• Bad News articles which show negative evidences of the company’s

financial status explicitly, e.g., “the shares of ABC fell in early New

York trading.”

By making use of frequent collocated phrases (FCP), the agent is able to

correctly categorize a news item. The FCP method searches for key words in

the text, however it is not important how far these words are apart in the text

(for example the words “shares” and “rose” in the same sentence would form

a FCP). Once a FCP is recognized in an article, a Domain Expert is created,

which can cast a vote on that article with a certain weight. Each Domain

Expert is a term (word) with a weight. The vote (or votes) determine the

classification of this article in the correct class (good, bad, etc.). If the agent

would encounter the phrases “deal, good, gain”, a vote would be cast with a

high weight for the Good category. The weights are assigned to the Domain

Experts by a naive Bayes classifier, with expectation maximization.

One of the conclusions of this research was the fact that they observed that

nearly all the financial news articles were very ambiguous on the subject

company. For example, it was hard for the algorithm to determine which

company was the subject in the following phrase: “Company A share has

gone up today. Competitors in the branch had a decline in share price.”.

CHAPTER 2. RELATED WORK 10

As we can see, the news item contains information about several companies,

however, (if company A is the subject) the subject is mentioned in certain

sentences. Therefore, the frequent collocated phrase method was restricted

to only sentences where specific company names appeared.

The results obtained by the application were encouraging, scoring accuracies

between 35% with previously unclassified articles, and 56% with previously

classified articles. However, the number of FCP that the application can

identify is very small (15 in total), and the focus is on machine learning

techniques, with no consideration to NLP techniques.

2.3 OASYS

OASYS describes itself as an opinion analysis system, where text documents

in a certain topic are scanned, in order to establish a general sentiment of

those documents on that topic, according to Cesarano et al. [2006]. The

results generated by the application can be either qualitative or quantitative.

It is critical however that a scope is always provided with the documents,

as the scores are determined by the documents in conjunction with the

topic. The architecture of the application consists from five distinguishable

components:

1. User specification: This allows the user to input the source of the

documents, which can be URLs, directories and domain names. Fur-

thermore, the topic has to be specified, and an interval time as well.

2. Web spider: This component has the task to retrieve the documents

from the input sources. It is also in charge of the filtering, as specified

by the user, of time intervals and topics. The algorithm facilitating

the topic filtering is further described in Deerwester et al. [1990].

3. Scored opinion expressing word bank: This component represents a

database with words that are more or less considered direct or indirect

opinions. Scores have been assigned to these words, expressing the

degree of positivism or negativism of the word. There are two methods

CHAPTER 2. RELATED WORK 11

to score the opinions: an extensible library of opinion expressing word

scoring methods and a restricted word bank with only specific types

of words (e.g. nouns).

4. Quantitative opinion analysis algorithms: The system employs several

algorithms, which analyze each document individually, and evaluate

the opinion of that document with regard to the topic. By employ-

ing the scored opinion expressing word bank, the application is able

to provide a quantitative score. Furthermore, the application allows

for additional score information gained from other applications / al-

gorithms. By making use of a hybrid algorithm, the system is able to

merge the results gained with outside results.

5. Qualitative scoring module: This component allows the application to

produce qualitative scores for the documents. This is accomplished by

assigning a variety of adjectives (e.g. positive, neutral, negative) to the

various ranges of the qualitative scores. The ranges for the adjectives

are learned automatically by the system. Furthermore, the application

can present users with a time evolution of the scores, for instance how

the opinion towards the Iraq war changed during the past 3 years.

The scored opinion expressing word bank was created by allowing a panel

of 16 individuals to rate 100 documents with a score from 0 to 1. The

higher the score (towards 1), the harsher the document is on the specific

topic. The lower the score (towards 0), the more positive the document is.

Furthermore, the rated documents were analyzed to extract the words and

build an opinion score, based on the relative proportion of a word and its

synonyms in the document, and the human score assigned to that document.

Once the scored opinion expressing word bank has been created, there are

several algorithms the application can be applied to retrieve a quantitative

opinion analysis:

• Topic-focused algorithm - this method searches for all the sentences

where a direct or indirect opinion is expressed about the topic. Per

CHAPTER 2. RELATED WORK 12

sentence a score is calculated by summing all the word matches in the

sentence with the word bank. The final score is then calculated by

taking an average score over all sentences.

• Distance-weighted topic focused algorithm - this method applies

the above discussed topic-focused algorithm to the document, by cal-

culating an average score for every sentence for each word match with

the word bank. The document is then divided in two parts, with one

part representing sentences with a direct or indirect opinion (group

1) and the second part representing no opinion regarding the topic

(group 2). By calculating the distance between sentences in group 1

and 2, the algorithm can determine the impact of sentences in group

2 on sentences in group 1. In other words, expression matches found

in sentences in group 2 which are near sentences from group 1 have

more weight on the final score compared to expression matches found

in sentences in group 2 which are further away from sentences in group

1.

• Template-based algorithm - this algorithm employs a set of sen-

tence templates, and only assigns scores to sentences matching the

template.

• Hybrid evaluation method - this method combines the results gen-

erated by the above mentioned algorithms (however it is not restricted

to them), to calculate an average score.

QualScore is the algorithm employed by the application to assign qualitative

scores to documents, reflecting the opinion on certain topics. A rating scale

was created, with a hierarchical order of adjectives (e.g. positive, harsh and

very harsh). Threshold values are then assigned to the adjectives, indicating

to what degree a document can be coupled with an adjective. For instance,

a quantitative score between 0 and 0.4 can represent positive opinion, 0.4

and 0.7 harsh opinion, etc. The ranges are automatically computed by the

system. The document receives a normal quantitative score, after which the

nearest (closest qua quantitative score) user analyzed document is found.

CHAPTER 2. RELATED WORK 13

The qualitative score assigned to that document by the user is then also

used for the computer analyzed document.

The results obtained by the application converge around 50%, with a com-

putation time of 1 second per weblog post, by applying the hybrid evaluation

method. It is important to point out the fact that this technique makes little

to no use of natural language processing techniques, except synonyms for

the adjective keywords.

2.4 AAC-based sentiment analysis

Benamara et al. [2007] proposes the use of an adverb-adjective combination

(AAC) based system to denote the opinion of a certain article or phrase on

a topic. The score produced by the system can range from –1 (fully negative

opinion) to 1 (fully positive opinion). Most such applications, that try to

extract the opinion from a digital text, concentrate only on adjectives. It is

the opinions of the authors however, that by taking into account the influence

of adverbs on adjectives, the systems can improve significantly. To begin

with, a list of adverbs is created, and these adverbs are then categorized as

followed by Lobeck [2000] and Quirk et al. [1985]:

• Adverbs of affirmation: certainly, exactly, totally, etc...

• Adverbs of doubt: roughly, apparently, seemingly, etc...

• Strong intensifying adverbs: astronomically, exceedingly, extremely,

immensely, etc...

• Weak intensifying adverbs: scarcely, weakly, slightly, etc...

• Negation and Minimizers: hardly, barely, etc...

Every adverb receives a score of 0 or 1. In this case, an adverb with score 0

means that this adverb has no influence on the adjective, and 1 the opposite.

The adjective list employed by the system, is the one from the OASYS

application, previously discussed.

CHAPTER 2. RELATED WORK 14

The system can employ three scoring algorithms, which all focus on different

aspects of the word matches. First there is the variable scoring algorithm,

where the score is calculated by simply adding the rating for the adjective

with a multiplied rating of the adverb. Furthermore we have the adjective

priority scoring, where a weight is introduced, which signifies the importance

of an adverb compared to an adjective that it modifies, the larger the weight,

the higher the impact. The last algorithm, adverb first scoring, is similar to

the previous one, however the weight is now applied to the adjective, instead

of the adverb. The results (precision and recall) obtained by this method

were slightly higher compared to the results obtained by OASYS.

2.5 TOWL

The Time-determined Ontology Web Language (TOWL)1 is a project with

the focus on news content studies towards institutional equities services,

investors and businesses, funded by the European Union. The main idea

behind TOWL is, as the name already suggests it, adding a time constraint

to the existing semantic web ontologies: OWL. Having a time property in an

ontology will give the opportunity to migrate from the current static repre-

sentations of the world, and move into a more dynamic content environment.

Equipped with this new technology, a machine-based approach in knowledge

extraction from business, market and global news, should provide the edge

in making improved business decisions, resulting in increased performance.

To present the possibilities that TOWL has to offer, a semantic stock broker

system is developed. Furthermore, this system acts as a benchmark for the

project. By employing news messages from Reuters, the system can define

and improve its ontology, to have a better representation of the real world.

With every new article, the system tries to deduce how a certain stock price

might fluctuate. The goal of this process is to generate accurate results

in order to increase profitability of investments on a given portfolio. This

semantic tool employs many NLP techniques, and its methods and goals

1TOWL - http://www.towl.org

CHAPTER 2. RELATED WORK 15

resemble ours to a high degree: analyze news items to predict financial

market trends.

The stock broker application developed for TOWL has three types of data:

• as first news items are the only input source for the prediction of the

stock price;

• secondly, a rich ontology, focused on the stock domain has been cre-

ated, where a lot of information regarding companies is stored;

• the results generated by the application, in the form of the develop-

ment of a specific stock price.

At the moment a prototype of the stock broker application is available,

which uses some plugins from GATE, as explained in Cunningham et al.

[2002]:

1. ANNIE Tokeniser and TOWL Sentence Splitter

These plugins are responsible for the breakdown of the text in words,

or sentences.

2. ANNIE POS Tagger

This plugin is responsible for identifying nouns, verbs, adjectives, ad-

verbs, etc., in the text as corresponding to a particular part-of-speech.

3. WordNet Lemmatiser

This plugin provides an interface to search the lemma of the words in

the text (for example, for “running” the lemma is “run”).

4. Gazetteer

This is a tool designed to analyze a text, given an ontology, and finding

matches between the ontology and the text.

5. OWL Ontology Instantiator

This tool makes sure that the ontology is being updated with newly

discovered instances.

CHAPTER 2. RELATED WORK 16

The stock broker in development for TOWL has a lot of potential to be-

come an effective application. By making use of different NLP techniques

in combination with the tools available from the Semantic Web, the appli-

cation is able to output fully annotated news articles. On another side note,

the extensive use of NLP techniques can provide a foundation for our own

project.

2.6 Other related work

In Cho [1999] the focus is on a system which employs probabilistic rules

to predict financial market price trends. As framework, the authors make

use of 400 hundred big word list, created by financial market experts. With

this list, he then attempts to assign weights to the words, by analyzing

news items about certain companies, and comparing the news items with

the closing price of that stock. From these values, the probabilistic rules are

generated. These rules are then used to predict where the stock price for a

certain company is heading: up, down or stay the same. In Peramunetilleke

and Wong [2002] the same probabilistic rule principle is applied, however

the news analysis is constrained to the news titles. An accuracy of 51%

was gained with this method in predicting the influence of news headlines

on intraday currency exchange rate movements, which was a 6% increase

compared to the previous method.

In Lavrenko et al. [2000] a Bayesian prediction model called Analyst is used

to predict stock price trends. This application compares already described

trends to news items and stock prices, in order to find out which news items

coupled with stock prices lead to which trend. Once the learning process

is done, the application is able to present users with relevant news items,

which may be the starting point of a price trend. Furthermore, in Fawcett

and Provost [1999] an approach is presented for predicting the influence of

news articles on the stock prices by closely monitoring the stream of data

(for example news items on RSS-feeds) for key words that may signal a

positive trend. In Ahmad et al. [2002], the authors tried to link certain

keywords (for example “rise”, “strong”) with the price trends on FTSE 100.

CHAPTER 2. RELATED WORK 17

NLP Events

Application Synonyms WSD Event restriction

Warren no no no

OASYS yes no yes

ACC yes no yes

TOWL yes no no

Table 2.1: Differences between existing prediction applications

Their conclusion was that the positive gradient in “good” news correlated

well with the positive gradient in the FTSE 100 index value.

2.7 Discussion

As already mentioned in the introduction of this chapter, it is important to

highlight the abilities of the above described applications, and at the same

time compare it to our application needs. In Table 2.1 we try to illustrate

the basic characteristics and differences of the applications. While Warren

makes use of machine learning techniques, the other three systems focus

more on the news articles by employing various NLP techniques. It is also

important to mention the fact that both OASYS & ACC-based system have

a restricted event list. Both systems are restricted to part of speech tags

such as adjectives and adjectives & adverbs respectively. This event list

could be expanded with a number of verbs for example. Last, the use of

NLP tools is only restricted to synonyms in some cases, and none of the

discussed applications employ word sense disambiguation (WSD).

2.8 Summary

Using specific learning techniques based on text classification, Warren at-

tempts to identify a number of key events in news articles. However, the

number of key events is very restricted, and no NLP technique is employed

at all. The accuracy of the system ranges from 35% to 56%, based on the

CHAPTER 2. RELATED WORK 18

news article input. Other machine learning techniques, where the authors

attempt to find relationships between stock prices and news items, involve

the use of probabilistic rules and Bayesian prediction models. The accura-

cies of such systems range between 45% and 51%. Again the use of NLP is

very limited.

OASYS and the AAC-based systems approach the prediction problem from

a different view, by placing the focus on the news articles themselves, instead

of the machine learning techniques. Furthermore, NLP plays a (small) role,

as the applications make use of synonyms. The problem however is the

event identification restriction, as they only search for adjectives (in the

AAC-based system they couple adjectives with adverbs). There are a great

number of verbs which represent important events that may influence the

opinion on stock prices. In both cases the accuracy converges around 50%.

The semantic stock broker created for TOWL resembles our project to a

high degree, by making use of the latest NLP techniques in order to predict

stock prices. In the following chapter we explore this, by discussing some of

the tools already employed by the Semantic TOWL stock broker.

As we can see from the discussed applications and research in this chapter,

there is a clear shift in the prediction systems from machine learning tech-

niques to natural language processing based techniques. This change can

be explained by the new developments in NLP techniques. Nevertheless, we

observe that the use of NLP techniques can be expanded, by introducing

word sense disambiguation in order to solve some of the ambiguity problems

and increase accuracy. Furthermore, the number of key events can also be

increased, however this has to happen without a loss in accuracy.

Chapter 3

Natural language processing

3.1 Introduction

In this chapter we present a more thorough analysis of the decisions made for

our application combined with the proper literature to support them. This

process helps us determine the requirements necessary for our application.

Furthermore, a natural language processing technique and software survey

is presented, where the advantages and disadvantages of each technique are

discussed. With the survey, it is our intention to identify the right “building

blocks” for our application.

3.2 Stock Markets

A stock market is essentially an entity that facilitates the trading of com-

pany stock, securities and derivatives. Stock exchanges are examples of such

entities. The stock exchanges are specialized in bringing buyers and sellers of

stocks and securities together. New York Stock Exchange (NYSE)1, NAS-

DAQ2 and American Stock Exchange (AMEX)3 are some of the biggest

1New York Stock Exchange - http://www.nyse.com
2National Association of Securities Dealers Automated Quotations -

http://www.nasdaq.com
3American Stock Exchange - http://www.amex.com

19

CHAPTER 3. NATURAL LANGUAGE PROCESSING 20

stock exchanges in the world. Stock markets represent one of the most im-

portant sources for companies world wide to raise financial investments. At

the same time it presents individuals with the opportunity to increase their

economic wealth, by investing in companies and buying stocks.

With the large sums of money involved in stock market transactions, many

have tried to identify patterns in stock prices, in order to predict their move-

ment. This process has gone as far as analyzing the influence of weather on

stock returns, as done by Hirshleifer and Shumway [2004]. They concluded

that sunshine is strongly correlated with increased stock returns. This trend

continued, and the answer was searched in the statistical field: from evolu-

tion strategy based on genetic algorithms Korczak et al. [2002] to adaptive

belief systems where agents try to evolve in an Agent Based Model proposal

by Hommes [2002]. In the literature there are several theories that attempt

to describe the behavior of a stock market, in order to be able to predict

it. The two most important are the efficient market hypothesis (EMH) de-

veloped by Fama [1965] and the random walk theory, created by Malkiel

[1990].

3.2.1 Stock Market prediction theories

The efficient market hypothesis (EMH) introduced by Eugene Fama, argues

that news and information are already incorporated in the price of a given

stock.

Definition: A financial market is (informationally) efficient when

market prices reflect all available information about value.

From this argument we can deduce that an individual can not make any

profits by using new information or news. So stock price prediction can not

be based on information. Furthermore, the EMH theory can be shaped in

three forms according to Brealey and Myers [2000]: weak, semi-strong, and

strong efficiency.

• Weak form efficiency

CHAPTER 3. NATURAL LANGUAGE PROCESSING 21

In the current stock price only historical price information is incorpo-

rated, making it impossible to create excess earnings based only on

past price analysis (technical analysis).

• Semi-Strong efficiency

The current stock price is built from publicly available information

and past prices, so there will be no excess earnings based on this

information (fundamental analysis and technical analysis).

• Strong form efficiency

The stock price now reflects all available information, public and pri-

vate, so excess earnings are not possible.

The semi-strong form efficiency implies that a fundamental analysis of new

publicly available information is incorporated in the stock price. However,

technically a time interval must exist between the introduction of new in-

formation (fresh news article regarding a company) and the balancing of

the stock price. Identifying and acting in this interval may be the key to

generate increased earnings.

The random walk hypothesis argues that the stock price evolves according

to a random walk. The underlying thought is that the current stock price

is independent from previous price information, so creating excess earnings4

is impossible. This argument is explained by the existing efficiency on a

market. If individual investors are able to recognize patterns in stock prices,

they would immediately take advantage of this. Once everyone is doing this,

the recognized patterns will become worthless according to Brealey and

Myers [2000]. However, this theory holds no argument against the influence

of new information on stock prices. For example new articles with company

information that was unknown beforehand can be used as a prediction tool.

3.2.2 Stock price relation to news articles

From the above discussed theories, we can conclude two hypotheses:

4Earnings over and above the expected rate of return.

CHAPTER 3. NATURAL LANGUAGE PROCESSING 22

• certain news articles influence the stock price of a given company ;

• the time interval to take advantage of the fundamental analysis of news

articles is very short.

In Chan et al. [2001] the authors confirm a relation between news items

and stock price. Their second conclusion was that the time interval to take

advantage of the knowledge is very small. In their research they discovered

that salient news articles always have a positive or negative consequence for

the stock prices and the volumes of traded stocks. Furthermore, the time

interval to take advantage of this knowledge is very short, as the prices stabi-

lize very fast. The same discoveries were made by Klibanoff et al. [1998] and

Yue-Cheong [1996], where relationships were found between salient news ar-

ticles from The New York Times and South China Morning Post respectively,

and the trading volumes and prices. This is also confirmed by Mitchell and

Mulherin [1994], where a strong and positive relationship was found between

news headlines from Dow Jones and absolute price changes.

According to Patell and Wolfson [1984], a visible price change is observable

after a news article release by Dow Jones. Immediate action must be taken

once a news article was released, in order to be ahead of other investors and

make profit.

3.3 Natural Language Processing

As already discussed in the first chapter, NLP can be defined with three

categories: speech, grammar and meaning. The focus of this thesis is to

determine the success of an application that predicts human sentiment, by

making use of grammar and meaning in the text analyzation process.

According to Christian and Tsoukermann [1999], the grammar component

can be divided in three distinguishable categories: lexicon, syntax, and mor-

phology. Furthermore, the authors determined that each category relies on

its predecessor. The morphology process can not be complete, without syn-

tax, which can not be complete without lexical analysis. Lexical analysis

CHAPTER 3. NATURAL LANGUAGE PROCESSING 23

refers to tokenization, which is the process of converting data sequences in

token sequences. Most used tokenization techniques are splitting big text ar-

ticles into individual paragraphs, sentences or words. Syntax analysis refers

to the process of finding out the part-of-speech tag of a given word in a

sentence. This is necessary for the next process, the morphological analysis.

The morphological analysis attempts to extract the lemma of a word, given

its part of speech tag. Once the lemma has been identified, word sense dis-

ambiguation can be applied in order to find the meaning of the lemma in a

sentence. In Figure 3.1 we depict the above described process. The input of

the system is a list D = (d1,...,dn), with di representing articles. The output

of the system consists from a list W = (wk1
1 ,...,wkn

n), where wi represent the

identified key events, and ki is their meaning.

In the following section of this chapter we discuss several software solutions

and algorithms, in relation to part-of-speech tagging and morphological anal-

ysis. As tokenization is a trivial process in our project, it is out of the scope

of the research.

Figure 3.1: The intended natural language process for news articles

CHAPTER 3. NATURAL LANGUAGE PROCESSING 24

3.3.1 Part-of-speech taggers

Over the years part-of-speech (POS) tagging has been at the base of different

NLP disciplines. POS tagging, also known as grammatical tagging, is the

procedure of assigning the correct part-of-speech to the words in a text,

based both on definition and context. In other words, POS tagging involves

the right identification of words as nouns, verbs, adjectives, etc.

For a long period of time, POS tagging was considered an inseparable part

of NLP. There are cases where assigning the correct part-of-speech depended

on the semantics of the text. The algorithms designed determined the part-

of-speech of words based on other NLP fields: syntax, morphology and

semantics. However this notion was proven wrong by several algorithms

such as the hidden Markov models according to Ghahramani [2002] and

Lee et al. [1990] or the Viterbi algorithm in Viterbi [1967]. These findings

convinced most people working in the field of POS tagging that it did not

require being part of an entire NLP process, but can easily be separated

from the other levels of the system.

In creating a relevant algorithm for POS tagging, there are two methods

from which one can choose. The first one is called ‘supervised learning’, and

it refers to the corpus on which the algorithm is trained on. In supervised

learning the corpus requires to be tagged by humans. There are several such

data sets available, with most popular ones being the Brown Corpus, which

is further explained in Schubert and Tong [2003] and the Penn Treebank,

Marcus et al. [1994]. The Brown corpus originates from 1961 and distin-

guishes as many as 87 different tags. The Penn Treebank is another corpus

that consists from over 4.5 million words in American English and originates

from 1989. In the Penn Treebank corpus we can find 36 different POS tags

and 12 other tags, denoting punctuation and currency symbols.

The second method is labeled ‘unsupervised learning’. The main difference

with the previous described method consists from the fact that the corpus

is not humanly annotated. Such unsupervised learning techniques make use

of an untagged corpus to train the data, and try to create POS tags by

induction. These algorithms are not making use of POS tags such as verbs,

CHAPTER 3. NATURAL LANGUAGE PROCESSING 25

nouns, etc. Instead they try to observe patterns in the text, and create

clusters for commonly detected patterns. Such techniques however require

many iterations to categorize everything correctly. Nevertheless, the clusters

of words created after many iterations are comparable to the same groups

of POS tags being used in supervised learning (e.g. verbs, nouns, etc).

TnT Tagger

The Trigrams’n’Tags tagger as described in Brants [2000], developed by

Thorsten Brants, makes use of a hidden Markov model (HMM). A HMM

is characterized by a stochastic finite state method, where the transitions

between different situations as well as the output of the model from the

situations is associated with a degree of chance. In other words, it is a

statistical model in which observable parameters can be used to find hidden

parameters. The author of the TnT Tagger strived to apply the simplest

form of a HMM algorithm, with the basic idea being: “the simplest is the

best”.

As we can observe in equation 3.1, the TnT Tagger attempts to calculate

the output probability (in this case the tag for a given word) based on

a sequence of given words w1...wT of length T. Moreover, t1...tT are the

potential tags for the previously mentioned words, and t−1, t0 and tT are

beginning of sequence and end of sequence markers to improve the accuracy.

Furthermore, the algorithm takes into account punctuations, assigning the

appropriate tags if sentence boundaries are not marked, and capitalization,

by changing the probability distributions for such words.

argmaxt1...tT

[
T∏
i=1

P (ti|ti−1, ti−2)P (wi|ti)
]
P (tT+1|tT) (3.1)

The TnT Tagger was trained and tested on the Penn Treebank, making it a

supervised learning algorithm. The initial testing of the algorithm reported

an accuracy of 96.7%. Training and tests on other data by Mieskes and

Strube [2006] sets reported a level of accuracy between 96.6% and 96.7%.

CHAPTER 3. NATURAL LANGUAGE PROCESSING 26

Stanford Bidirectional POS Tagger

The Stanford bidirectional POS tagger as described Toutanova et al. [2003]

makes use of the same hidden Markov model (HMM) as the TnT tagger.

However, where the previous algorithm looked at previous tags to calculate

a probability for the new tag, this algorithm looks in both directions. The

following formula gives the underlying thought behind the tagger.

P (w|t) =
T∏
i=0

P (ti|ti−1, ti+1) (3.2)

To calculate the POS tag t for word w, the algorithm looks first at the tag

it assigned to the previous word ti−1 and to the next word ti+1.

The bidirectional tagger was trained and tested on the Penn Treebank and

at the same time on the same data sets as the TnT Tagger, in Mieskes and

Strube [2006]. For the Penn Treebank, the reported accuracy was between

96.5% and 97.15%. For the external data sets the accuracy was at the same

levels, between 96.7% and 97%.

Brill Tagger

The Brill tagger, as described in Brill [1993], is named after its creator, Eric

Brill. The past few decades the academic field of part-of-speech tagging

became more and more used with the idea that a stochastic approach the

most efficient and accurate is. However, the Brill tagger proved that dif-

ferent approaches, where no probabilities are involved, also work as good,

and maybe even better. Stochastic taggers have no direct linguistic informa-

tion, only statistical data about the information. The Brill tagger however,

works on a rule-base that has direct linguistic information stored in a non-

stochastic way. While the previous two discussed algorithms make use of a

hidden Markov model, the Brill tagger makes use of a transformation-based

error-driven learning paradigm.

Transformation-based error-driven learning is designed to allocate a POS

tag to each word in stage 1, and possibly improve the POS tag using a set of

CHAPTER 3. NATURAL LANGUAGE PROCESSING 27

predefined rules in the second stage of the process (possibly improve because

not each rule leads to an improvement). The first stage of the tagger assigns

tags to words based on the examination of a large corpus (specifically it picks

the tag with the highest count as found for that word in the corpus). If a

word is not known, it automatically receives the tag “noun”. In the second

stage of the process, the tagger applies a predefined set of rules which can

change the initial tag. An example of such a rule is: if the word ends with

“ed”, change the tag to a verb. This rule is first tested on the corpus, and if

the error level is dropping (compared to the error level before the rule was

applied), the rule can be applied to your own text. The author reports that

he has identified 66 rules which produce a reduction of error.

The Brill tagger was as well trained and tested on the Penn Treebank, having

an accuracy between 96.7% and 97.2%. For different external data sets, the

accuracy was between 96.1% and 96.5%.

3.3.2 Morphological analysis

Morphology analysis, also known as lemmatization, is a natural language

processing field that is concerned with the structure of words. The principle

idea behind it is that words are related to each other by rules. The use of

morphological analysis for the NLP domain consists from reducing words

to their base canonical form, also known as the lemma. For example a

morphological analyzer should identify as the canonical form for the words

‘running’, ‘ran’ and ‘runner’ the word ‘run’. A morphological analyzer

requires the part-of-speech tag for the word, in order to determine the proper

lemma.

Stemming

Stemming, as described in Frakes [1992], is the procedure of reducing words

to their stem, also known as the root of the word. Differently from mor-

phology analysis, stemming does not require contextual information of the

words, like the part-of-speech. The first research in the field of automated

CHAPTER 3. NATURAL LANGUAGE PROCESSING 28

root words extraction dates from 1968, when Martin Porter published the

first stemming algorithm in van Rijsbergen et al. [1980]. The algorithm be-

came very popular, and soon many implementations and extensions were

added to improve it. This algorithm was a suffix stripping algorithm, which

makes use of a rule list to strip down words to their stem:

• if ends with SSES ⇒ change to SS

caresses ⇒ caress

• if ends with S ⇒ delete s

cats ⇒ cat

• if ends with ATIONAL ⇒ change to ATE

relational ⇒ relate

Such algorithms are very simple to create and very fast to run. However,

the performance is very poor given words as ‘sung’ and ‘sing’.

Another well-known stemming approach is the brute force algorithm, de-

scribed in Xu and Croft [1998]. The brute force algorithm compares words

to a database of words, trying to match characters. The algorithm stops

at the first occurrence of the pattern. This approach is not very efficient

and requires a lot of database space. Moreover in its original state, the al-

gorithm is very resource consuming. This was later fixed by using hashing

methods to speed up the process, by implementing the Rabin-Karp method,

in [Cormen et al., 2001]. Instead of searching for patterns in the database,

hash values would be calculated and compared.

Last, there are stochastic algorithms available for determining the stem of

a word. Using probabilities, these algorithms can be trained on tables with

root words and ‘normal’ words to develop a probabilistic model.

Lemmatization is closely related to stemming and the above mentioned ap-

proaches. As previously mentioned, a stemmer processes a word without in-

formation of the context. In practice this means that stemming algorithms

are easier to implement and run faster but at the same time, with a reduced

CHAPTER 3. NATURAL LANGUAGE PROCESSING 29

accuracy than lemmatisers. Morphological analyzers are very accurate but

take a while longer for processing. A simple example where some stemming

algorithm would fail to identify the root word would be the string ‘better’,

with the root of ‘good’. On another note, some lemmatization techniques

make use of stochastic algorithms. The difference with the above mentioned

stochastic algorithms would consist from an improved accuracy given the

part-of-speech tag (more data is always better in probabilistic approaches).

WordNet

WordNet, as described in Fellbaum [1998], the lexical database of English de-

veloped by the University of Princeton, has a morphological analyzer called

Morphy. According to Miller et al. [1990], Morphy is an add-on for the

dictionary that enables users to query WordNet with derivational forms of

words of interest. Morphy can process derivational word forms, reducing

the words to their lemma. This feature provides a certain user friendliness

(users are not required to know the lemma for each word they want to look

up) and at the same time it makes it easier to use WordNet in larger natural

language processing applications, which most of the time are dealing with

non lemmas.

Noun Verb Adjective

Suffix Ending Suffix Ending Suffix Ending

s s er

ses s ies y est

xes x es e er e

zes z es est e

ches ch ed e

shes sh ed

men man ing e

ies y ing

Table 3.1: WordNet recognized suffixes and suggested endings

The morphological analyzer, Morphy, is composed from two different steps.

CHAPTER 3. NATURAL LANGUAGE PROCESSING 30

In the first step exception files (one for each part-of-speech category, except

adverbs)are used to identify certain English exception words. An example

of this can be the string query ‘better’ with the lemma ‘good’. The list

is kept alphabetically ordered and the word matching is being done by a

binary search algorithm. The second step consists from a suffix stripping

algorithm, which attempts to replace word endings, in order to find the

lemma. This process also requires the part-of-speech category for each word

(except adverbs). The rules of suffix stripping, categorized by the part-of-

speech, can be viewed in Table 3.1. When a query is being processed by

WordNet, Morphy is firstly utilized to retrieve the lemma of that query.

First the string is compared to the exception list, and if no hit is generated,

the suffix stripping algorithm is being used. The morphological analyzing

process employed by WordNet can be seen in Figure 3.2.

Figure 3.2: The WordNet morphological analyzer

3.4 Summary

In this chapter we described two popular theories that attempt to describe

stock market behavior. The efficient market hypothesis (being one of the

theories) argues that news and information is already incorporated in the

CHAPTER 3. NATURAL LANGUAGE PROCESSING 31

price of a given stock. The random walk hypothesis (the second theory)

argues that one can not deduce the stock price from previous states of the

company (such as company information, stock price information). However,

there were several authors that were able to find a connection between news

articles and a company’s stock. There is an existing time interval between

the release of a new news item and the impact of it on the stock price.

For the natural language process designed for our application, two compo-

nents were highlighted in this chapter (with the third following in the next

chapter). We recognized the importance of part-of-speech tagging and the

morphological analysis of text documents. Three part-of-speech tagging al-

gorithms were discussed: TnT tagger, Stanford bidirectional POS tagger

and Brill tagger. The first two algorithms make use of hidden Markov mod-

els, with the main distinction being the direction in which the tagger looks,

to calculate the tag. While the TnT tagger makes use of the previous two

assigned tags to draw a conclusion about the concerning word, the Stan-

ford tagger looks in both directions. The third tagger, the Brill tagger, uses

a rule-based approach to assign tags. All three taggers scored very high

accuracies, well above the 95%.

To conduct a morphological analysis of a given word, there are different

approaches one can choose from. Stemming was one of the more popular

approaches, where a suffix stripping algorithm reduced words to their stem.

Other not so popular approaches (due to accuracy and processing time) were

brute force algorithms and stochastic algorithms. To improve the accuracy

of stochastic algorithms, lemmatization was introduced. By assigning the

correct part-of-speech tag to a word, the accuracy of the stochastic algo-

rithms improved significantly. Morphy is an implementation of such an

algorithm, designed specifically for WordNet.

Chapter 4

Word sense disambiguation

4.1 Introduction

In the previous chapter we discussed the economic foundation for our appli-

cations. At the same time, we presented several natural language processing

algorithms and tools, which can aid us in our goals. In this chapter we con-

tinue the latter, with the focus on word sense disambiguation techniques.

This analysis should be used for building the word sense disambiguation

module in our application.

4.2 History

Semantic ambiguity has been one of the greatest challenges in designing nat-

ural language processing systems. In every natural language, words can have

different meanings, depending on the text. For humans this has proven to be

a trivial process (in most cases), however, designing a computer algorithm

to replicate this process seems to be a demanding task.

Already in the early history of WSD, the skepticism was great. In Bar-

Hillel [1964], the authors argue that existing and future electronic computers

could not resolve sense ambiguity, because that would first require to model

32

CHAPTER 4. WORD SENSE DISAMBIGUATION 33

all world knowledge for computers. The authors presented the following

example to prove their point:

Little John was looking for his toy box.

Finally he found it.

The box was in the pen.

John was very happy.

It was the opinion of the authors, that whether the word pen would pos-

sess two senses, a writing implement and enclosure (first and second sense

according to WordNet), an electronic computer would not be able to pick

the right one. In the following decades, the WSD process evolved from

hand-coded rule-based applications to larger scale lexical resources, where

knowledge extraction was crucial. This was followed by the supervised ma-

chine learning techniques breakthrough in the 1990s. In the last decade, the

focus was on fine-tunement and domain adaptation to more specific topics.

4.2.1 Applications of WSD

In the literature, WSD has traditionally been associated with three tasks:

machine translation, information retrieval and knowledge acquisition. It

is important to mention that WSD has been perceived as an intermediary

process which facilitates a final task.

• Machine Translation

Scientists have always believed that WSD would revolutionize the ma-

chine translation field. In Hutchins and Somers [1992] the authors

argue however that the problem might be more complex than it ap-

pears. A translation machine is confronted with two WSD problems:

ambiguity in the first language, from which one attempts to translate

from and ambiguity in the second language, in which one attempts to

translate to. The first case of ambiguity is trivial, as one has to find

the meaning from the context in the first language. The second case

CHAPTER 4. WORD SENSE DISAMBIGUATION 34

however proves to be a challenge, where for instance a word has in the

first language only one meaning and in the second language it might

have multiple meanings. However, according to Brown et al. [1991],

the accuracy of a machine translation system improves significantly

(with over 8%) when WSD is employed.

• Information Retrieval

With information retrieval we refer to search engines processing query

inputs (e.g., Google, Yahoo!). Whether search engines would index

documents by word senses, search efficiency could be greatly improved,

as irrelevant documents would never be retrieved. In practice however,

the accuracy improvements are very small. According to Krovetz and

Croft [1992], by making use of a perfect WSD example, the accuracy

improved only 2% (the authors manually disambiguated text docu-

ments). In Sanderson [1994], the author found a relationship between

the length of the search query and accuracy: the shorter the search

queries, the higher is the accuracy improvement with a WSD system.

An explication for this phenomenon is that the standard statistical

algorithms employed by information retrieval systems work on a co-

occurrence base. The words in a search query then help disambiguate

each other, when searched in documents.

• Knowledge Acquisition

Word sense disambiguation might be the most important NLP task

for knowledge acquisition. This would allow creating highly intelligent

computer agents to find, reason and extract information from any dig-

italized source (e.g. the Internet). At the same time, WSD algorithms

would facilitate an efficient transition to the Semantic Web, where

automated annotation of documents is required.

4.3 Methods

There are a number of different approaches to implement a word sense dis-

ambiguation solution. However, most solutions can be classified in one of

CHAPTER 4. WORD SENSE DISAMBIGUATION 35

the two following categories:

1. Corpus-based

2. Knowledge-based

We shall now discuss each approach individually.

4.3.1 Corpus-based approaches

In corpus-based approaches the focus is on employing machine learning tech-

niques on large fragments of text. The underlying idea is that the context

itself should provide enough information for word disambiguation. Machine

learning models are trained on parts of the corpus, resulting in numerical

classifiers. The classifiers are then used to disambiguate new fragments of

text. The corpus-based methods can further be divided in two subclasses

(typical to machine learning algorithms): supervised and unsupervised dis-

ambiguation.

Supervised algorithms

When the training corpus of a machine learning technique is already disam-

biguated (all words in the text were tagged with the correct sense), we speak

of a supervised approach. In the training process, a classifier is constructed,

which is then able to correctly label new words with their sense, based on the

rest of the context. The earliest attempts to supervised disambiguation were

Bayesian classifiers in Duda and Hart [1974], decision trees in Rivest [1987]

and k-nearest neighbors and neural networks in Rumelhart et al. [1988].

One of the biggest problems with supervised algorithms is the necessity of

large tagged corpus for the classifier training. At the moment there are

two large corpora available. The SemCor corpus, as described in Landes

et al. [1998], was developed by Princeton University and contains almost

700.000 running words. All the words are part of speech tagged, and more

than 200.000 words were lemmatized and sense tagged. The second corpus,

CHAPTER 4. WORD SENSE DISAMBIGUATION 36

Senseval, is a corpus made specifically for the evaluation of word sense dis-

ambiguation systems, according to Kilgarriff and Rosenzweig [2000]. The

corpus is derived from the Hector dictionary, an artifact created by Oxford

University Press.

There are however ways to surpass the above described problem, by making

use of semi-supervised algorithms. The bootstrapping approach makes use

of an initial seed (mostly a small number of manually tagged words) and a

supervised learning method, to train an initial classifier. This classifier can

then be used on the remaining untagged corpus, to classify the most con-

fident instances (which score above a certain level). A new training set is

then available (the initial manually tagged set and the new machine tagged

set) to retrain the algorithm. Once the training is done, the classifier is

used again on an even larger corpus. This process can be repeated a num-

ber of times, or until the corpus is exhausted. A number of bootstrapping

approaches can be seen in Hearst [1991], Yarowsky [1995] and Mihalcea and

Moldovan [2001].

Unsupervised algorithms

A method which does not require large sense-tagged corpora is represented

by unsupervised algorithms. One of the assumptions in WSD is that word

senses depend on the context. This means that words should retain their

sense, as long as the context is the same. By assigning a similarity degree to

contexts, a computer would induce word senses. The most popular method

for this process is cluster based analysis. For each encountered word sense

a cluster can be created. New instances of the word are then assigned to

the correct cluster, based on the similarity of the context with the cluster.

Examples of such approaches can be seen in Pedersen and Bruce [1997].

4.3.2 Knowledge-based approaches

While the above described methods rely heavily on extensive sense tagged

corpora, in knowledge-based approaches the focus is on a machine under-

CHAPTER 4. WORD SENSE DISAMBIGUATION 37

standable specification of world knowledge (in our case word senses). These

methods can primarily be categorized in machine readable dictionaries, the-

sauri and lexical repositories.

Dictionaries

The first attempt to employ machine readable dictionaries for word sense

disambiguation purposes came from Lesk [1986]. The underlying thought

was that word co-occurrences in documents are related to each other, and

that word relations can be also found in the dictionary entry of each word

(e.g., definitions, senses, etc.). The disambiguation process attempts to

find a pair of two words with the most overlap in dictionary definition.

The Oxford Advanced Learner’s Dictionary was used as information source.

The accuracy of the system was between 50% and 70%. In Cowie et al.

[1992], the authors tried to improve the system by searching for overlaps of

an entire sentence, instead of pairs of words. However, this process proved

to be computationally inefficient, while there were slight improvements in

accuracy.

Machine readable dictionaries are not very efficient in word sense disam-

biguation, because there is a lack of pragmatic information1, according to

Ide and Véronis [1998]. The dictionaries are primarily made for humans,

and not computers.

Thesauri

Contrary to dictionaries, thesauri contain information about the synonyms

and antonyms of words2. The most popular thesaurus is Roget’s Interna-

tional Thesaurus, as described in Hullen [2003]. Several authors proposed

WSD systems which make use of the semantic categories that can be found

in Roget’s Thesaurus. In Yarowsky [1992] and Walker [1987], the authors

1An example of pragmatic information is for example the co-occurence of ash and

tabacco, which can not be found in a dictionary.
2While the dictionary’s main purpose is to define words, the thesaurus tries to give you

correct synonyms and antonyms.

CHAPTER 4. WORD SENSE DISAMBIGUATION 38

attempt to classify words to the categories available in Roget’s thesaurus

(meaning that the categories act as senses). The first author recorded an

accuracy of 92%, however he specified that the method works best with

nouns. In Walker [1987], an accuracy of 50% was gained. Again, the same

argument can be used as with dictionaries that thesauri are primarily made

for humans, and not computers.

Lexical repositories

While the purpose of the previous two data sources is to be useful to humans,

lexical repositories are the main information source for computers. Since

researchers realized that traditional information sources are insufficient for

computer algorithms to be efficient, the need for better data became obvious.

Besides WordNet Fellbaum [1998], other important lexical repositories are

EuroWordNet in Rodŕıguez et al. [1998], SIMPLE in Lenci et al. [2000]

and ComLex in Grishman et al. [1994]. Since WordNet is the most popular

lexicon, in the following section of this chapter we present several word sense

disambiguation methods based on this repository.

4.4 WSD approaches based on WordNet

The strongest property that WordNet has to offer over the above described

knowledge-based methods, is the word-to-word relationships that are coded

in the database. Three databases are implemented in WordNet: for verbs,

for nouns and one for adjectives & adverbs together. In each database there

are lexical entries, which are associated with several synsets. A synset is a

group of synonyms with the same definition, and each synset represents a

different sense of a word. In the example bellow we illustrate the WordNet

entry for the noun fence.

(n) fence, fencing: a barrier that serves to enclose an area

(n) fence: a dealer in stolen property

CHAPTER 4. WORD SENSE DISAMBIGUATION 39

For each database, a set of semantic and lexical relations have been defined

between the synsets. In Tables 4.1 and 4.2 we present the most important

relationships defined by WordNet for two part of speech tags, nouns and

verbs. The adjective and adverb relations are restricted to only derivations3

and antonyms.

Relation

Hypernym Definition Y is a hypernym of X if X is a (kind of) Y

Example canine is a hypernym of dog

Hyponym Definition X is a hyponym of Y if X is a (kind of) Y

Example dog is a hyponym of canine

Coordinate Definition Nouns or verbs that have the same hypernym

Example wolf is a coordinate dog

Holonym Definition Y is a holonym of X if X is a part of Y

Example building is a holonym of window

Meronym Definition Y is a meronym of X if Y is a part of X

Example window is a meronym of house

Antonym Definition Opposites of each other

Example follower is an antonym of leader

Table 4.1: Noun relationships in WordNet

Relation

Hypernym Definition Y is a hypernym of X if X is a (kind of) Y

Example travel is an hypernym of movement

Troponym Definition X is a troponym of Y if to X is to Y

Example to lisp is a troponym of to talk

Entails Definition Y is entailed by X if you do X you must do Y

Example to sleep is entailed by to snore

Antonym Definition Opposites of each other

Example increase is an antonym of decrease

Table 4.2: Verb relationships in WordNet

Based on the semantic and lexical relations available in WordNet, several

WSD approaches have been developed to extract the meaning of words from

the context. We shall now discuss each approach individually.

3Adverbs are often derived from adjectives, and sometimes have antonyms; therefore

the synset for an adverb usually contains a lexical pointer to the adjective from which it

is derived.

CHAPTER 4. WORD SENSE DISAMBIGUATION 40

4.4.1 Path-based similarity

By making use of the hierarchical order of concepts in WordNet (hyper-

nym/hyponym relations), we are able to measure the similarity by calcu-

lating the path length between two words. However, there is one problem

which is associated with path-based measures. The lexical database which

is employed requires being relatively consistent in the interpretation of the

relation. This is not the case with WordNet, where concepts lower in the

hierarchy are less general than those higher in the hierarchy. This would

translate to a different degree of similarity (even with the same path length)

between general concepts and specific concepts4.

Rada et al.

In Rada et al. [1989], the authors implemented a path-based solution, “by

defining the conceptual distance between two concepts as the shortest path

through a semantic network”, according to Pedersen et al. [2005]. The path

was constructed with the hypernym/hyponym (is-a) and holonym/meronym

(part-of) relations. By counting the edges in the shortest path between

two concepts, the system was able to calculate the similarity between the

concepts:

similaritypath (c1,c2) = 1/p (4.1)

where p is the shortest path between the two concepts (c1,c2).

Leacock and Chodorow

In Leacock and Chodorow [1998], the same approach as in Rada et al. is

used, by calculating the shortest path between two concepts with the hy-

pernym/hyponym relationship (is-a). Once the path has been identified, it

is scaled down by the depth D of the hierarchy. The total length between

4For instance, the path length between rodent and mouse is one, which is the same

length between fire iron and implement.

CHAPTER 4. WORD SENSE DISAMBIGUATION 41

a leaf node and the root node forms the depth of the hierarchy. Thus, the

similarity of a path is the following:

similaritypath (c1,c2) = log

(
(2 ∗D)

p

)
(4.2)

where p is the shortest path between the two concepts (c1,c2) and D is the

maximum length in the hierarchy from the top root node to the lowest node.

Wu and Palmer

While the previous two methods focused on the path length between two

concepts, in Wu and Palmer [1994], the authors focus on the path length

between a concept and the root of the hierarchy. By finding the distance

between two concepts to the nearest specific ancestor node, the algorithm is

able to present the similarity between the concepts. This root node is also

called the lowest common subsummer (lcs). The similarity is calculated by

the following formula:

similaritypath (c1,c2) =
2 ∗ depth (lcs (c1,c2))

depth (c1) + depth (c2)
(4.3)

where depth measures the distance between the node and the root node.

Hirst and St. Onge

In Hirst and St. Onge [1998], the authors developed an algorithm which

takes into account more WordNet relationships, and does not focus only

on the traditional is-a. This method is at the same time the only path-

based method which is able to find the similarity between different part of

speech words. To do this, the authors have assigned directions to the paths

traveled between two concepts. These directions can be upward, downward

and horizontal and are coupled with the different type of relationships found

in WordNet5. By identifying the nature of the path that joins the concepts,

5For instance, is–a is an upward relation while is–a–kind–of is a downward relation

and antonyms are horizontal relations.

CHAPTER 4. WORD SENSE DISAMBIGUATION 42

the algorithm is able to measure the similarity. The similarity is stronger

if the path is shorter and the number of direction changes is small, and the

similarity is weaker with a long path with many direction changes. The

similarity is calculated by:

path weight = C − path length− (k ∗# changes in direction) (4.4)

where C is 8 and k is 1, according to Budanitsky and Hirst [2001].

4.4.2 Information content similarity

The information content measure is a method which tries to calculate the

specificity of a concept in a hierarchy. As already discussed with path-based

methods, the similarity of two concepts is very different when the concepts

are very general or very specific. This approach tries to identify the infor-

mation content of a concept, by counting the number of times the concept is

mentioned in a large corpus, and calculating a maximum likelihood estimate.

IC(concept) = −log(P (concept)) (4.5)

The information content of the concept is defined in this case as the negative

of the log likelihood -log(P(concept)), where P(concept) is the probability

of encountering the concept in a text. The intuition of using the negative

likelihood is that the higher the probability to find a concept in a text, the

less information it contains. If the probability increases, the informativeness

decreases, making the information content of this concept lower. In Figure

4.1 we can observe an is-a taxonomy tree from WordNet. The concept

money has less information content when compared to nickel, because the

P(money) > P(nickel) (the probability to encounter money is greater than

the probability to encounter nickel in a text).

CHAPTER 4. WORD SENSE DISAMBIGUATION 43

Figure 4.1: Taxonomy tree from WordNet

Resnik

In Resnik [1995], the author tries to combine the lowest common subsum-

mer as described above in Wu and Palmer with information content. The

basic idea is that two concepts are similar corresponding to the degree of

information they share (the lcs). To formulate this:

similarity (c1,c2) = IC (lcs (c1,c2)) (4.6)

where lcs is the lowest common subsummer. Again, the is-a relationships

is used, however the path length is irrelevant in this case.

Jiang and Conrath

Further developing the method created by Resnik, in Jiang and Conrath

[1997] the authors try to establish a link between the difference of infor-

mation content of the individual concepts and the information content of

the lowest common subsummer. They believe that the discrepancy between

the two individual concepts and the lcs, measures the distance between the

concepts in the hierarchy.

distance (c1,c2) = IC(c1) + IC(c2)− 2 ∗ IC(lcs(c1, c2)) (4.7)

This distance shows the similarity between the two concepts (if low, the

CHAPTER 4. WORD SENSE DISAMBIGUATION 44

similarity is high, and vice versa). This can be translated to a similarity

formula by taking the inverse according to Pedersen et al. [2005]:

similarity (c1, c2) =
1

distance (c1, c2)
(4.8)

Lin

In Lin [1997], the author translated the method developed by Wu and

Palmer, to take into account the information content of the concepts. At

the same time, there is a big resemblance between this method and the

one discussed previously, by Jiang and Conrath. In both cases the informa-

tion content of the lcs is compared to the information contents of the two

individual concepts. This has been formulated as following:

similarity (c1, c2) =
2 ∗ IC(lcs(c1, c2))

IC(c1) + IC(c2)
(4.9)

4.4.3 Graph-based similarity

While the previous two categories (path-based and information content sim-

ilarity) are static of nature (the similarity is calculated individually without

taking into account the rest of the sentence), graph-based similarity tries

to determine the sense of the words collectively, by making use of the de-

pendencies between the senses. Graph-based methods consist mainly from

three steps Sinha and Mihalcea [2007]:

1. a graph has to be created, in which all word sense dependencies are

calculated

2. calculate the sense scores according to the graph-based algorithms

3. select the highest score for the each word

For each sentence in a text, a new graph G : V → E has to be created.

Each node v ∈ V in G represents a sense of a word in that sentence. The

CHAPTER 4. WORD SENSE DISAMBIGUATION 45

algorithm starts by identifying all nodes v ∈ V and computing all edges

e ∈ E according to a dependency algorithm, as illustrated further. Once all

edges are computed, the graph-based algorithm computes the best path in

G. An example illustration of such a graph, with three words totaling six

senses, can be observed in Figure 4.2 v ∈ V represents a sense of each word,

while the edge is computed with a similarity aglorithm. Each node contains

the score computed by a graph-based algorithm.

Figure 4.2: An example word sense disambiguation graph

Dependency algorithms

There are multiple metrics which can be used to calculate the word sense

dependency within a graph. These metrics have two basic requirements

in order to work for graph-based similarity. In the first place a machine

readable dictionary is required, in order to automate the process. Further-

more the metrics should not rely on limited semantic relationships, which

only apply to one part-of-speech category as with many WordNet similarity

algorithm examples.

1) Hirst and St. Onge [1998] can be used as a dependency algorithm, as it

is not limited to one specific part-of-speech category. In Mihalcea [2005] the

author proposes a new metric, which computes the token sense overlap of

two words. Taking a pair of words, the algorithm calculates the number of

common tokens per sense between the words.

2) In Sinha and Mihalcea [2007] the authors combine the previously dis-

cussed similarity algorithms from subchapter 4.4.1 (Path-based similarity)

CHAPTER 4. WORD SENSE DISAMBIGUATION 46

and 4.4.2 (Information content similarity) to calculate the dependency be-

tween words within a graph. In order to contain all the part-of-speech

categories, they have developed a combined algorithm: Jiang and Conrath

for nouns, Leacock and Chodorow for verbs and Lesk (as described in Lesk

[1986]). For nouns and verbs the combination was determined by using the

highest performing similarity measure per part-of-speech connection, and

Lesk would measure all the remaining part-of-speech categories (adjectives,

adverbs).

3) Navigli and Lapata [2010] propose a new method of building a graph,

which has no weights assigned to the edges between the nodes. This method

tries to recreate a WordNet graph with only the relevant nodes and edges.

Given a sentence and all the senses of the words within that sentence, they

search the WordNet graph using a depth-first strategy for each sense, until

they find a new sense which exists in the current list of senses. If such a sense

is found, that and all intermediate nodes and edges are added to the new

relevant graph. As already mentioned, the WordNet edges only represent

semantic relations between senses, without numeric weights, meaning the

resulting relevant graph is unweighted.

Graph-based algorithms

The graph-based algorithms in this context calculate the influence of a node

within a graph in relation to the other nodes. These algorithms can be

further split in two categories: local and global. While local algorithms

focus on the centrality of the node within a graph, global algorithms measure

the overall structure of the graph instead of the node. In several tests

(Navigli and Lapata [2010] and Navigli and Lapata [2007]) global graph-

based algorithms performed relatively bad compared to the rest, so we will

not discuss them.

1) Degree centrality: The simplest and fastest way to measure the central-

ity of a node is to count the number of edges connecting to a node in an

undirected graph. This results in two algorithms however, one if the graph

is unweighted and the edges have no ‘distance’ assigned to it, and the second

CHAPTER 4. WORD SENSE DISAMBIGUATION 47

if the graph is weighted and each edge has a ‘distance’ assigned to it.

In the first case the degree of the node is calculated by summing the number

of edges incident to the node, and normalize it by the maximum degree. In

an undirected unweighted graph G = (V,E), the degree of a node deg(Va)

is calculated as follows:

deg (Va) =
|{{Va, Vb} ∈ E : Va ∈ V }|

|V | − 1
(4.10)

where |{{Va, Vb} ∈ E : Va ∈ V }| represents the number of edges betewen

nodes Va and Vb in G.

In the second case, the degree of a node is calculated by summing the

weights of the edges which are connected to a specific node. In an undirected

weighted graph G = (V,E), the degree of a node deg(Va) is calculated as

follows:

deg (Va) =
∑

(Va,Vb)∈E
wab (4.11)

where wab represents the weight betewen nodes Va and Vb. As we can see,

this equation has no normalization as the previous one. This was due to the

fact that normalization was already calculated in the weight of the edge.

2) Betweenness centrality: This centrality method calculates how often

a node is on the shortest path between other nodes. The more often, the

more central. Again we have unweighted and weighted calculation for a

undirected graph.

The weighted algorithm is:

betweenness (Va) =
∑

Vb∈V,Vc∈V

σVb,Vc (Va)

σVb,Vc

(4.12)

where σVb,Vc represents the number of shortest paths between Vb and Vc

and σVb,Vc (Va) the number of shortest paths between Vb and Vc that pass

through Va.

CHAPTER 4. WORD SENSE DISAMBIGUATION 48

For the unweighted algorithm, a normalization is required:

normBetweenness (Va) =
betweenness (Va)

(|V | − 1) (|V | − 2)
(4.13)

where (|V | − 1) (|V | − 2) represents the number of pairs of vertices excluding

Va.

3) PageRank: PageRank is based on the eigenvector centrality, a method

which measures the importance of a node within a graph. The algorithm as-

signs relative scores to a node based on the following principle: high scoring

connected nodes add more value to the score of the selected node compared

to low scoring nodes. This is done recursively based on a Markov chain

model:

PageRank (Va) = (1− d) + d ∗
∑

(Va,Vb)∈E

PageRank (Vb)

|deg (Vb)|
(4.14)

where d represents a constant for the random-walk model as recreated in a

Markov chain model (the walker takes random steps in a graph). d is set to

0.85 based on Brin and Page [1998].

In a weighted graph, the importance of a node is replaced by the weight of

the edge between two nodes:

PageRank (Va) = (1− d) + d ∗
∑

(Va,Vb)∈E

wab∑
(Vc,Vb)∈E wbc

PageRank (Vb)

(4.15)

where wab represents the weight between node Va and Vb.

4.4.4 Discussion

In Figure 4.3 we can see all the word sense disambiguation categories dis-

cussed in this chapter. The most important for our research is however

WordNet, and algorithms based on WordNet. This can be observed in Fig-

ure 4.4. Based on this figure, we created Table 4.3 illustrating a general

CHAPTER 4. WORD SENSE DISAMBIGUATION 49

Figure 4.3: A representation of all types of word sense disambiguation,

organized by type

classification of the similarity algorithms accompanied with their advan-

tages, disadvantages and precision where possible (for some algorithms only

the F-measure was reported). The results for the path-based and informa-

tion content algorithms were reported by Pedersen et al. [2005], graph-based

algorithms (except Navigli) by Sinha and Mihalcea [2007] and the rest by

Navigli and Lapata [2010].

As we can observe, between path-based and information content algorithms,

Jiang & Conrath performs best. When looking at graph-based algorithms,

the degree measure performs the best for Sihna et al. and Navigli.

CHAPTER 4. WORD SENSE DISAMBIGUATION 50

Type Creator Methodology Advantage Disadvantage Precision

Path Rada et al. Count edges in shortest Simple Requires rich lexical F-measure

based path knowledge base Noun: 0.24

No multiple inheritence Verb: 0.16

is-a relations only Senseval 2

Leacock & Shortest path between Simple is-a relations only F-measure

Chodorow concepts, with log scaler Corrects for hierarchy Noun: 0.24

depth Verb: 0.13

Senseval 2

Wu & Palmer Path length to subsummer Simple is-a relations only F-measure

scaled by subsummer path Noun: 0.29

to root Verb: 0.05

Hirst & Takes into account all Not only is-a WordNet specific F-measure

St. Onge WordNet information relations Noun: 0.21

Verb: 0.09

Senseval 2

Information Resnik Information content of the Takes advantage Does nothing with F-measure

content least common subsummer of empirical statistics individual lcs Noun: 0.30

is-a relations only Verb: 0.05

Senseval 2

Jiang & extension on Resnik Takes into account is-a relations only F-measure

Conrath individual concepts Noun: 0.40

Verb: 0.19

Senseval 2

Lin extension on Resnik and is-a relations only F-measure

Wu & Palmer Noun: 0.33

Verb: 0.06

Senseval 2

Graph Mihalcea & Random walk on graph with Simple Based on token overlap Noun: 57.5%

based PageRank encoded label dependencies with no implicit connection Verb: 36.5%

and weights for the edges Computational expensive All: 54.2%

Senseval 2

Sihna et al. Combined similarity algorithm: Combines the best Computational expensive Noun: 60.5%

& PageRank jcn for nouns, lch for verbs, of all similarity algorithms Verb: 41.7%

lesk for rest All: 52.8%

Senseval 2

Sihna et al. Same as above, only a Combines the best Computational expensive Noun: 61.1%

& Degree different graph measure of all similarity algorithms Verb: 43.3%

method All: 53.4%

Senseval 2

Sihna et al. Same as above, only a Combines the best Computational expensive Noun: 49.4%

& Betweenness different graph measure of all similarity algorithms Verb: 20.7%

method All: 39.5%

Senseval 2

Navigli & Random walk on a graph based Makes use of Computational expensive All: 49.7%

PageRank on WordNet graph WordNet explicitly SemCor

encoded connections

Navigli & Same as above, only a Makes use of Computational expensive Noun: 61.9%

Degree different graph measure WordNet explicitly Verb: 36.1%

encoded connections All: 50.0%

SemCor

Navigli & Same as above, only a Makes use of Computational expensive All: 48.7%

Betweenness different graph measure WordNet explicitly SemCor

encoded connections

Table 4.3: Comparison between different similarity measure methods

CHAPTER 4. WORD SENSE DISAMBIGUATION 51

Figure 4.4: All similarity measure methods based on WordNet, organized

by type

4.5 Conclusion

There are several methods in order to resolve the semantic ambiguity of

words. In this chapter we discussed these methods, categorized on the ap-

proach employed: corpus-based and knowledge-based. Corpus-based ap-

proaches rely on machine learning techniques, where prediction models (

Bayesian classifiers, decision trees and neural networks) are developed and

trained on large disambiguated corpora. The unsupervised method of this

approach does not require a corpus, but tries to identify the different mean-

ing of the words on its own, with cluster classification. For every word

meaning, a cluster is formed.

The knowledge-based approach relies on some form of machine understand-

able representation of the world. This can either be a dictionary, a thesauri

or a lexical repository. However, the design of dictionaries and thesauri

CHAPTER 4. WORD SENSE DISAMBIGUATION 52

proved to be inefficient in word sense disambiguation, as both are primar-

ily made for humans, and not computers. The use of lexical repositories in

combination with word sense disambiguation is a growing trend. WordNet is

the most popular lexicon. The strongest property that WordNet has to offer

over the other knowledge-based methods is the many types of word-to-word

relationships that are coded in the database.

There are several approaches to the word sense disambiguation problem,

using WordNet. In the path-based measures, the distance in the WordNet

graph between the words is calculated. The first implementation of this was

by Rada et al. This algorithm was extended by Leacock & Chodorow, by

scaling the similarity with the depth of the hierarchy. Another path-based

method is presented by Wu & Palmer, where the similarity of two words

is given by finding the distance between the two concepts to the nearest

specific intersection root node (lowest common subsummer). The last path-

based algorithm, developed by Hirst & St. Onge, calculated the similarity

between two words by the turns change in directions in the graph. The

smaller the number of direction changes, the higher the similarity.

The information content (IC) approach tries to identify how specific or gen-

eral a word is, by counting the number of times the concept is mentioned

in a large corpus, and calculating a maximum likelihood estimate. The first

implementation of this approach was done by Resnik, where the basic idea

is that two concepts are similar corresponding to the degree of information

they share in common (the lowest common subsummer). Jiang & Conrath

expanded this, by taking the difference between of the individual ICs and

two times the shared IC of the lowest common subsummer. A similar ap-

proach to the Wu & Palmer one was developed by Lin, where the similarity

is represented by the IC of the intersection root node.

Graph-based similarity tries to determine the sense of the words collec-

tively, by making use of the dependencies between the senses. Word senses

are mapped to nodes, and relations between the senses become edges. Mi-

halcea created a framework for graph-based algorithms: 1) calculate sense

dependencies in a sentence, 2) calculate sense scores based on graph-based

algorithms, 3) select the correct sense for each word. For the first step

CHAPTER 4. WORD SENSE DISAMBIGUATION 53

there are several choices: a token sense overlap between two words and a

combination of path-based & IC similarity algorithms to calculate the de-

pendencies between nodes. Navigli & Lapata proposed an alternative to the

first step, by creating a weightless undirected graph based on the WordNet

graph between two words. The second step of the framework can be filled in

by a number of graph optimization algorithms: degree centrality, between-

ness and PageRank. These algorithms measure the importance of the node

within the graph.

Jiang & Conrath was reported to perform the best in the path-based and IC

similarity pool, while degree centrality was the best performing graph-based

algorithm. Furthermore, it is important to note that the computation time

of graph-based similarity algorithms exceeds that of path-based and IC, as

you need to disambiguate an entire sentence compared to two words of the

same part-of-speech.

Chapter 5

Architecture

5.1 Introduction

In this chapter we explain the design of our application. Furthermore we

elaborate on the choices made with respect to the different implemented

modules.

We begin by giving an overall view of the application architecture. This is

followed by a detailed examination of the text processing module (with the

focus on the word sense disambiguation algorithm). We also give attention

to the user interface, and more importantly, the manner in which the news

are presented.

5.2 StockWatcher

Many of the ideas motivating this research have originated from a previous

project, Micu et al. [2008]. In this project, a prediction system was developed

which would rate news articles as having a positive or negative influence on

the sentiment of a given company. However, the changes required to adapt

this project to our current goals would prove inefficient, so we created a new

application, called StoackWatcher 2.0.

54

CHAPTER 5. ARCHITECTURE 55

In Figure 5.1 we can observe the overall process of our new application, and

the flow of data. There are three distinct data sources required, in order

for the application to run correctly. The events originate from a comma

separated value (csv) file from the server. The financial database is also a csv

file, and contains historical stock prices for NASDAQ-100 listed companies.

This database gets automatically updated every day. The news sources

represent RSS-feeds or locally stored news items (text format). We have

preconfigured the application already with several popular RSS feeds, but

the user has the ability to customize it with custom RSS feeds.

Figure 5.1: StockWatcher 2.0 conceptual model of the information flow.

Once a user engages the application, and the company has been selected, the

application loads the three data sources. The news items undergo a series

of text processing algorithms, after which they are rated based on event

matches. Every article receives a stock price prediction, which indicates the

effect of the news item on the closing price that day. Once all news items

have been rated, they are presented to the user chronologically, together

with a dynamic flash chart (which is generated from the historical stock

prices). This provides a user friendly interface to interact between news

items and previous stock prices.

CHAPTER 5. ARCHITECTURE 56

5.3 Document preprocessing and article rating

Before an article is rated, it must be processed to improve machine read-

ability. As already discussed in chapter 3, a natural language processing

system has to be developed, with the following components: a tokenizer, a

POS-tagger and a morphological analyzer. Furthermore a word sense disam-

biguation component has to be present, in case disambiguation is required.

We implemented all these requirements in our application, as depicted to

Figure 5.2.

Figure 5.2: StockWatcher 2.0 NLP pipeline.

CHAPTER 5. ARCHITECTURE 57

As we can observe in Figure 5.2, the first step in the sequence is the tok-

enization module. The tokenization process makes sure that the text is split

in correct sentences, and unnecessary white spaces and non-word characters

are deleted (for example punctuation marks). This is done by construct-

ing regular expression-based patterns with the unnecessary characters, and

upon identification within a sentence removing them.

For the part-of-speech tagging we implemented the Stanford POS tagger,

released by the Stanford Natural Language Processing Group. The bidi-

rectional tagger has the highest accuracy, and an English trained model is

already available. For more information on the used types, the Stanford

NLP Group website can be visited1.

Once the sentence is tagged with the correct part-of-speech, the application

finds the lemma of each word in the WordNet lexicon. This process is done

by a module called the Java WordNet Library (JWNL), further described

in Didion [2007]. JWNL is an application programming interface (API)

that is required to access the WordNet dictionary. This module enables

morphological processing and relationship discovery (which is useful for word

sense disambiguation). The lemmatization takes place word for word, and

once all the words have been processed, the news article is being rebuilt,

with the new lemmas. The following example is taken from an article:

"_struggled and won the fiercest_"

would be transformed into

"_struggle and win the fierce_"

Transforming the article into its lemmatized representation enables us to

keep the knowledge base of economic events minimal. There is no need to

take into account different forms of the words (for example for the verb ‘go’

we don’t need to store: ‘goes’, ‘going’, ‘went’, ‘gone’).

1http://nlp.stanford.edu/software/tagger.shtml

CHAPTER 5. ARCHITECTURE 58

5.3.1 Event recognition

Most of the economic events in the csv file originate from Micu et al. [2008],

with some minor improvements. The events are divided in groups, according

to their economic origin and synonymity. For example: events regarding the

stock price (and all their synonyms) were placed in one group, events re-

garding the income/earnings (and all their synonyms) were placed in another

group, etc. Each line in the csv file represents an event and its character-

istics. All the event groups can be found in Appendix A. Each event is

encoded in the following manner:

event;word sense;POStag;minimal word match;weight (5.1)

The first encoded block, event, represents the full event name (an event

can have one or several words). The second block represents a sequence

of senses for each word from the first block (coded as numbers, and the

number of senses should be equal to the number of words). The numbers

are related to the WordNet sense numbers. The third block is a string

representation of the part-of-speech per event word. The fourth block is a

number, which indicates what are the minimum number of words from each

event that should be recognized in a sentence, for the event to be valid.

For one word events, this is 1, but for multiple word events this number

can be greater. The last block is the weight assigned to the event (positive

or negative). Furthermore we have the following distinction between the

events: ambiguous events which require word sense disambiguation (a word

sense and POS-tag is given) and events where the semantic similarity is not

important, as long as the full event can be found in a sentence. We will call

the first group AmbEvents (ambiguous events) and the second DisambEvents

(disambiguous events).

release;5;VB;1;1.88

In the example from above we have an event from the AmbEvents group.

The event is release, with WordNet sense 5: “prepare and issue for public

CHAPTER 5. ARCHITECTURE 59

distribution or sale”, with POS-tag verb, only 1 word to match, and a weight

of 1.9.

share rise;0 0;null null;2;4.7

In this example word disambiguation is not important, as it is reasonable

to expect that if this exact word structure would be found in a sentence,

the meaning would be the same. First we have the event share rise, with

no meaning assigned (sense 0 does not exist in WordNet) and null POS-tag

(the 0 and the null are based on our encoding scheme). Both words are

required to be present in a sentence, and the weight assigned to it is 4.7.

The event distinction allows the event recognition module to differentiate

between events which require disambiguation (AmbEvents) and events where

the sense disambiguation is not an issue (DisambEvents). We illustrate the

process for DisambEvents with the following sentence example for the Apple

company: “Shares of Apple rose 12 percent after posting a 48 percent gain

in net income”. The tokenization would split up the sentence in words and

would remove common words such as of, a, in and other non text characters

such as numbers and semicolons. The POS-tagging module assigns a correct

tag to each word, making it possible to lemmatize each word. The result

so far is as following: 1. share, 2. apple, 3. rise, 4. percent, 5. after, 6.

posting, 7. percent, 8. gain, 9. net, 10. income. The application is now

capable of matching the event share rise to the words in the sentence. If

the #minimal word match condition has been satisfied, the rating can be

calculated.

For the AmbEvents set, after the event has been identified and the #min-

imal word match condition has been satisfied, the algorithm proceeds to

identify the WordNet sense number for the event. More on this subject in

the next sub chapter.

Word sense disambiguation

All events in the AmbEvents group are either verbs or nouns. If we are

to select from the word sense disambiguation algorithms from Chapter 4,

CHAPTER 5. ARCHITECTURE 60

we have the following options: graph-based on degree Sihna et al. and

Navigli. As we can observe in the results, the Sihna et al. graph-based degree

approach yields almost identical results for nouns (Sihna et al. precision of

61.1% compared to Navigli 61.9%) however outperforms for verbs (Sihna

et al. precision of 43.3% compared to Navigli 36.1%). For this reason

we selected Sihna et al. graph-based degree algorithm as the word sense

disambiguation technique.

For word sense disambiguation we employ GWSD: Unsupervised Graph-

based Word Sense Disambiguation as described in Sinha and Mihalcea [2007].

The library contains the required WordNet similarity measures, Jiang &

Conrath (JnC) and Leacock & Chodorow (LCh). Furthermore it contains

the degree centrality algorithm to perform our tests. Based on the target

word (in this case the event which was found in a sentence) we create a

graph with all the words which share the same POS-tag with the target

word. Based on the target word POS-tag, all the word sense dependencies

are weighted according to JnC for nouns, and LCh for verbs. The second

step is to calculate the degree centrality for each sense. This allows us to

find the highest scoring sense for our target word.

In Algorithm 1 we can observe the pseudo code for the graph-based degree

centrality similarity calculation. Based on the target word found in the

sentence, we create an array containing all the words from the sentence of

the same POS-tag type as the target word. From this array a graph is

created where each vertice represents a sense stwi
for each word wi. All the

vertices are assigned weighted edges based on the similarity measure (JcN

for nouns, LCh for verbs). For more information see chapter 4, figure 4.2.

Once the graph G is ready, each vertice is assigned a score based on the

degree centrality algorithm. This is done by summing the weights of the

edges connected to each vertice. Now we can find the correct sense for our

target word, by selecting the highest scoring vertice.

CHAPTER 5. ARCHITECTURE 61

Algorithm 1 The word sense disambiguation based on graphs and degree

centrality

Input: array with words wi, where i = 1 to N (last word in sentence),

where all words are the same POS-tag as the target word

Input: admissible senses of stwi
, where t = 1 to Nwi (last sense for wi)

Output: Graph G

1: for i = 1 to N do

2: for j = i+ 1 to N do

3: for t = 1 to Nwi do

4: for y = 1 to Nwj do

5: weight← Similarity(stwi
, sywj

) {JcN for nouns, LCh for verbs}
6: if weight > 0 then

7: AddEdge(G, stwi
, sywj

, weight)

8: end if

9: end for

10: end for

11: end for

12: end for

Input: Graph G with vertices V

Output: Graph G with each vertice V scored according to degree centrality

1: for Va ∈ V ertices(G) do

2: Score(Va)← DegreeCentrality(Va)

3: end for

Input: vertice for target word x

Input: scored admissible senses of stx, where t = 1 to Nx (last sense for x)

Output: WinnerSense for target word x

1: for t = 1 to Nx do

2: MaxSimilarity = 0

3: WinnerSense = 0

4: if MaxSimilarity < Score(stx) then

5: MaxSimilarity = Score(stx)

6: WinnerSense = t

7: end if

8: end for

CHAPTER 5. ARCHITECTURE 62

Distance factoring

In Micu et al. [2008], one of the problems we encountered is that news

items were being categorized correctly (positive or negative), however for

the wrong company. In an article regarding a company, it is common that

news about competitor companies are mentioned as well. If the application

would find the event “income growth” in the text, and the company of in-

terest is not mentioned in the neighborhood, it is unclear if this event has

any relevance. One of the lessons learned in Micu et al. [2008] was that

sentences where the target company was mentioned were relevant, includ-

ing the preceding and succeeding sentence. All other sentences might be

referring to a different company, and should be ignored. For this reason we

applied a distance factoring filtering on each news article, which discards all

sentences that are not in the vicinity of the target company based on the

above described rule.

5.3.2 Event training

In order to assign the correct weights to the events, a training set with news

articles is created. To determine the impact of an event on the stock price

we made use of a method described in Cesarano et al. [2006]:

event weightc (w) =

∑
d∈Dtest

(
avscc (d) ∗ nc(w,d)∑

w′∈oewc(Dtest)
n(w′,d)

)
∑

d∈Dtest
avscc (d)

(5.2)

with the following definitions:

1. nc(w, d) Denotes the number of occurences of event w (and its syn-

onyms) on day d for company c.

2. avscc (d) Indicates the percentual difference between the opening price

and the closing price on the same day d for company c. In this case

d+2 or d+4 indicates the percentual difference between opening price

on day d and closing price on d+ 2 or d+ 4 respectively.

CHAPTER 5. ARCHITECTURE 63

3. Dtest Refers to the entire set of test days.

4. oewc(d) Denotes the total number of event occurences on day d for

company c.

5. event weightc (w) The event weight is calculated per company c, in-

dicating that the same event can have different weights depending on

the company.

This method has its roots in statistics as discussed in Sheldon [2002]. The

purpose is to calculate the contribution of the stock price change to the rel-

ative proportion of the event on a given day. If we average this contribution

for the entire test case (all the days in the test set) we can calculate the

event weight for the entire test frame. Applying this method will result in

an event document for each company in the training set.

For example, the Google event document can have the following event entries

(and their respective weight):

• stock decline, -0.321

• revenue increase, 0.731

• launch, 0.121

while the Apple event document can have the following entries:

• stock decline, -0.210

• revenue increase, 0.338

• sign deal, 0.443

As we can observe, both event documents have 2 events in common, however

the event launch has only been trained for Google, and the event sign deal

has only been trained for Apple.

CHAPTER 5. ARCHITECTURE 64

Once the contribution of each event towards the stock price change for a

certain company has been calculated, we can calculate an average event

weight based on the individual company event weights:

event weight (w) =

∑
c∈es(b) event weight

c (w)

occurenceses(b) (w)
(5.3)

with the following definitions:

1. event weight (w) The average event weight for event w.

2. es (b) Denotes the the entire event set for all companies.

In this case, the system produces only one event document, and by extending

the previous example we have the following entries:

• stock decline, (-0.321+-0.210)/2

• revenue increase, (0.731+0.338)/2

• launch, (0.121)/1

• sign deal, (0.443)/1

5.3.3 Article rating

Once all the events are weighted, the application is capable to rate new news

articles. To assign ratings to the articles based on the event weights, the

following method is used:

resultc (d) =
∑

w∈eo(d)
event weightc (w) (5.4)

with the following definitions:

1. resultc (r, d) Denotes the percentual stock price change for day d for

a given company c. In this case d+ 2 or d+ 4 indicates the percentual

difference between opening price on day d and closing price on d + 2

or d+ 4 respectively.

CHAPTER 5. ARCHITECTURE 65

2. event weightc (w) Refers to the event weight for event w for a given

company c.

3. eo(d) Denotes the total number of event occurences on day d.

This method identifies all events in the news articles on day d for a given

company, and calculates the percentual stock price change expected at the

end of the day (or over 2 days, etc. depending on the selection of d).

5.4 Conclusion

In this chapter we have presented the detailed design of our application. At

the foundation of the application there are three important data sources. An

encoded event list, where each event has several characteristics and a weight;

a financial database with historical stock prices; the news articles that can

be provided from RSS feeds or from the local disk. All these data sources

are then used by the application to calculate a rating for news article, and

present the results to the user.

Before a news article can be rated, a series of steps have to be followed first:

• the text is first tokenized in sentences;

• all the words are POS-tagged;

• all the words are lemmatized by the morphological analyzer.

After these steps are fulfilled, the rating of the article takes place. For

this process a word sense disambiguation method is applied, provided by

the Unsupervised Graph-based Word Sense Disambiguation package. The

package contains a degree centrality algorithm, which calculates the correct

sense of a word based on a graph built according to a sentence structure.

The similarity algorithm is implemented in an event recognition module,

which attempts to identify the event in a sentence, and assign the correct

rating. The rating is based on the following factors: event ambiguity (if the

CHAPTER 5. ARCHITECTURE 66

sense of an event in an article does not correspond to our event sense or is

not clear) and weight of the event.

To assign weights to the events, a training set is used with news items. The

application assigned weights to the events based on which events it found

in articles per day, and the percentual change in closing price. For each

company an event document containing all the events found in the training

set for that company and the relative weight of the event based on the

percentual stock price change. This results in multiple event documents, 1

for each trained company. Once this is finished, an average event weight

based on the individual company event weights is calculated as well.

Chapter 6

Validation

6.1 Validation setup

In this chapter we discuss the validation of the results of our application. For

this purpose we are testing the precision and excess return of our application

with the following parameters:

• with c(d), which represents same day closing price for company c;

• with c(d+ 2), which represents the closing price in d plus two days;

• with c(d+ 4), which represents the closing price in d plus four days;

• with i(d) where i(d) = c(d) − Index(d), where Index represents the

NASDAQ Index percentual closing price change;

• with i(d+ 2), defined similarly as above;

• with i(d+ 4), defined similarly as above;

These parameters are computed with word sense disambiguation (WSD), as

well as no word sense disambiguation (NOWSD). Furthermore the company

specific event weights (denoted as eventc(w)) are used as well as the average

event weights (denoted as eventa(w)).

67

CHAPTER 6. VALIDATION 68

To validate our approach, the application was trained according to the above

mentioned parameters resulting in 12 event weights per company (WSD with

the six parameters as described above, and NOWSD with same parameters).

The training set consists from the 48 largest companies listed on NASDAQ.

The articles for the training set are gathered from Dow Jones Newswires1.

The time frame for the training set was established between 1 January 2010

and 31 December 2010. In total 16685 articles were scanned (348 articles

on average per company, with a standard deviation of 495). More details on

the news distribution per company can be found in the appendix.

To validate the training results a second time frame was used for the same

48 companies, from 1 January 2011 to 31 December 2011. The articles were

again gathered from Dow Jones Newswires and the same parameters were

used as described above. The predicted rating indicates the expected per-

centual change from the opening price on the date of the article apparition.

This allows us to compare the results with the actual closing prices and cal-

culate the precision of the application with the different parameters used.

More information regarding the validation set can be found in the appendix.

To compare our results with actual closing prices we employ two rating

systems. The first one is based on BUY / SELL indicators, where our appli-

cation (based on the calculated rating) gives a BUY (if the rating is above

0) / SELL (if the rating is below 0) signal. We then proceed to compare

these indicators with actual market data for the dates and companies in

our validation set. The precision in this case is calculated by: number of

correctlly identified signals related to the number of identified signals. We

average the precision over all companies.

The second rating system is based on the excess returns generated by our

BUY / SELL indicators. We define excess returns as the investment returns

generated by our portfolio that exceed the NASDAQ index returns for the

same time period. For the period of the validation set (2011), the NASDAQ

1Dow Jones Newswires is a real-time news organization with a net-

work of 2,100 journalists, with more than 19,000 daily news items: http :

//www.dowjones.com/factiva/index.asp

CHAPTER 6. VALIDATION 69

index produced negative returns of -1.80%2. When the application calculates

a BUY indication for a certain time period (d, d+ 2 or d+ 4) the strategy is

to go long in shares for that company for the indicated time period. When

the application calculates a SELL indication, the strategy is to go short in

shares for that company for the indicated time period. The starting capital

for the investment is 1000$ per company (resulting in a total of 48000$). For

the period of 1 January 2011 to 31 December 2011 the capital is invested

chronologically per company, per BUY / SELL signal.

To illustrate the approach lets consider the following example. For the date

of 6 January 2011 the application calculates an expected 0.652 percentual

rise in the stock price for Apple, for the c(d) parameter (this is the first

chronological observation for Apple, so the investment capital is 1000$).

1. 0.652 is positive, resulting in a BUY indication;

2. Go long in Apple shares for the value of 1000$;

3. The price of the shares increase with 4% at the end of the day;

4. Sell the shares of Apple resulting in a profit of 40$. The current

investment capital is 1040$;

For the date of 7 January 2011, the application calculates an expected -

0.731 percentual decline in the stock price for Apple, for the c(d) parameter

(current investment capital is 1040$).

1. -0.731 is negative, resulting in a SELL indication;

2. Go short in Apple shares for the value of 1040$;

3. The price of the shares declines by 6% at the end of the day.

4. Sell the shares of Apple resulting in a profit of 62.4$. The current

investment capital is 1102.4$.

2http : //www.1stock1.com/1stock1 142.htm

CHAPTER 6. VALIDATION 70

If we were to step out of the market at this moment, the total investment

return after 2 transactions would be of 10.24%. Following this example,

transactions are carried out for all the companies within the validation set.

At the end of the time frame the total investment capital is summed over all

companies and the percentual return is calculated. Dividend dates, borrow-

ing fees and stop-loss orders (an order to buy or sell a stock once the price

of the stock reaches a specified price, known as the stop price, to manage

your risks) are out of the scope in the current calculations. Furthermore,

for the d + 2 and d + 4 parameters, once an investment has been placed

for a company, no new investments can be placed for the same company as

long as the current investment period is active. The final excess return is

the difference between the percentual return for the entire portfolio (let’s

assume 10.24% in this case) and NASDAQ performance (-1.80%), resulting

in 12.04%.

We also created a random result set per parameter, based on randomly

(positive and negative) generated numbers, which should indicated the per-

centual stock price changes. These results act as a baseline for our precision

and investment return measures. Furthermore we discuss the computation

time difference between using WSD and NOWSD.

6.2 Results

As already described, the news articles for validation are from the same pool

of data, but from a different time frame. In total 17589 articles were scanned

(366 articles average per company, with a standard deviation of 598). The

precisions for validation method 1 can be found in Table 6.1 for company

specific event weights and Table 6.2 for average event weights, while the

second validation method results can be found in Table 6.3 for company

specific event weights and Table 6.4 for average event weights.

CHAPTER 6. VALIDATION 71

Method WSD NOWSD Baseline

c(d) 0.506 0.502 0.491

c(d+ 2) 0.500 0.500 0.486

c(d+ 4) 0.493 0.505 0.494

i(d) 0.502 0.501 0.496

i(d+ 2) 0.503 0.501 0.499

i(d+ 4) 0.512 0.508 0.505

Table 6.1: StockWatcher 2.0 - BUY/SELL precision for company specific

event weights.

Method WSD NOWSD Baseline

c(d) 0.509 0.509 0.491

c(d+ 2) 0.533 0.530 0.486

c(d+ 4) 0.497 0.503 0.494

i(d) 0.493 0.495 0.496

i(d+ 2) 0.502 0.510 0.499

i(d+ 4) 0.484 0.492 0.505

Table 6.2: StockWatcher 2.0 - BUY/SELL precision for average event

weights.

Method WSD NOWSD Baseline

c(d) 5.13 2.95 0.92

c(d+2) 0.18 -3.09 -1.65

c(d+4) -1.14 -0.74 0.77

i(d) 3.10 4.82 1.77

i(d+2) 4.17 3.18 0.63

i(d+4) 5.63 3.23 1.89

Table 6.3: StockWatcher 2.0 - Excess returns for company specific event

weights, expressed in percentages.

CHAPTER 6. VALIDATION 72

Method WSD NOWSD Baseline

c(d) 5.91 5.22 0.92

c(d+2) 6.42 6.31 -1.65

c(d+4) 4.03 3.70 0.77

i(d) 1.81 -0.77 1.77

i(d+2) 0.55 4.89 0.63

i(d+4) -0.23 3.69 1.89

Table 6.4: StockWatcher 2.0 - Excess returns for average event weights,

expressed in percentages.

6.3 Computation time

An important performance measure for the application in a real-time de-

ployment is the computation time. For this purpose we tested how long it

takes for the system to rate an article on an average desktop computer3.

In Table 6.5 we can observe the average computation time per article in

seconds (measurement was done on the entire validation set, consisting of

17589 articles).

WSD 1.21

NOWSD 1.19

Table 6.5: StockWatcher 2.0 - Average computation time per article in

seconds

As we can observe, the average time to process an article is highest for WSD,

and lowest for NOWSD, which is natural due to the additional computation

time performed by WSD.

3Windows 7 64bit, Intel Core2Duo E8500 @3.17GHz, 4GB RAM

CHAPTER 6. VALIDATION 73

6.4 Discussion

With this project we aimed to create an application which can predict the

stock price of listed companies by the interpretation of human natural lan-

guage. To compare the results of the WSD, NOWSD and random baseline

approaches, we also address the statistical significance of these results. For

the first validation effort we make use of the Fisher’s exact test4 (a test

which calculates if the differences between two binary observation sets is

the result of chance, or were due to other factors). The null hypothesis is

defined by: there is no significant difference between the result sets. For the

second validation we make use of the Wilcoxon paired signed rank test5 (a

statistical hypothesis test used when comparing two related samples). The

null hypothesis is defined by: the median difference between pairs of obser-

vations is zero. If we can reject the null hypothesis, the compared results

are significantly different. In both cases we want to determine whether the

degree of the observed difference (for example between WSD and NOWSD)

reflects anything more than some lucky guessing.

The results for the first validation effort (predict precision of BUY / SELL

signals) show that for the company specific event weights (eventc(w)), the

parameter i(d + 4) with WSD performs the best with a precision of 0.512

(Fisher test p-value of 0.39 when compared to NOWSD and 0.27 when com-

pared to the random baseline, indicating that there is no statistical sig-

nificance in the difference between WSD and NOWSD / random baseline

results). Furthermore almost all precision results perform better with WSD,

when compared to NOWSD results or the random baseline (with the excep-

tion of c(d + 4)). When we look at the average event weights (eventa(w)),

the parameter c(d+ 2) gives the best result with a precision of 0.533 (Fisher

test p-value of 0.40 when compared to NOWSD and 0.00001 when compared

the random baseline).

The interpretation of these results is that having a higher number of events

to match to news articles improves the overall precision, even if these events

4http : //graphpad.com/quickcalcs/contingency1.cfm
5http : //www.wessa.net/rwaspReddy−MooresWilcoxonMann−WitneyTest.wasp

CHAPTER 6. VALIDATION 74

were trained for different companies. Furthermore, the use of word sense

disambiguation provides the best results for both weight methods (eventc(w)

and eventa(w)). We can conclude that having a higher number of events

increase the precision, as long as the sense of the event is relevant.

In the second validation effort (calculating the excess investment returns) we

can observe that for eventc(w) the parameter i(d+ 4) with WSD performs

the best, with a significant excess return of 5.63% (Wilcoxon p-value of 0.000

when compared to both NOWSD and random baseline). When we look at

eventa(w), the parameter c(d+2) provides the best result, with a significant

excess return of 6.42% (Wilcoxon p-value of 0.000 when compared to both

NOWSD and random baseline).

Again we can imply that events trained for different companies carry their

weight impact to other related companies as well (hence eventa(w) outper-

forming eventc(w)). The results also indicate that the news item impact on

the stock price is noticeable after a delay.

To summarise the conclusions of the two validation tests:

• there is a noticeable news item impact on the stock price, however

after a delay;

• events which were trained to predict the stock price for company A

can carry their prediction impact to the stock price for company B;

• making use of WSD increases the performance overall, for precision

and return results;

Chapter 7

Conclusion

In this thesis we laid out the stock price prediction framework for our ap-

plication, StockWatcher 2.0. By combining different Natural Language Pro-

cessing (NLP) tools, we created a prediction system for stock prices based on

text articles. As discussed in the first chapters, the use of NLP has increased

over the years, as new tools and information sources became available, for

example WordNet. However, word sense disambiguation (WSD) is fairly

new, and has not been employed on a large scale for news analytics.

To be able to interpret the core subject of an article, one must know the

intended meaning of the words. For humans this task is trivial, but for

machines this has been proven to be an obstacle. For this reason we im-

plemented a word sense disambiguation module in our application, in order

to improve the machine understanding of an article. We have chosen for

the graph-based degree WSD algorithm according to the Sihna et al. This

measure has the better precision compared to other techniques.

One of the more important steps in our research was to determine the impact

of an event on the stock price for a company. A training set from Dow Jones

Newswires articles was composed for the time period of 1 January 2010

- 31 December 2010, for the top 48 non-financial companies rated at the

NASDAQ. The training facilitated the calculation of the event weight (each

event identified within an article received a weight based on the percentual

difference between the opening price and closing price). With each event

75

CHAPTER 7. CONCLUSION 76

weighted, the system is able to calculate new stock prices based on new

articles for the same company. We also created an average weighted training

set from all company specific events, in order to be able to predict stock

prices for companies which are not part of the training set.

We then proceeded to measure the application precision on new articles. A

test set was created, with the same parameters, for the time period of 1

January 2011 - 31 December 2011. The validation was done in two steps:

in the first step the system calculates the precision by predicting the BUY

/ SELL signal for a day given a company, in the second step we calculate

the investment excess return based on the actual returns generated by our

BUY / SELL indicators (by following a long / short stock selling strategy

based on the indicator) compared to the NASDAQ index returns for the

same time period. The first method produced the best precision at 0.533%

with average weighted events with word sense disambiguation enabled. The

second method produced the best significant investment excess return of

6.42% in favour of average event weights with word sense disambiguation.

In both validation steps the results were significantly better than a random

predicted result set (based on randomly positive and negative generated

numbers, which should indicated the percentual stock price changes).

Our research question was: “Is it possible to predict stock prices for listed

companies by analyzing events in news items?”. Our tests concluded that

our application, making use of word sense disambiguation based on graph

degree similarity, produces higher precision and investment return results

when compared to a random baseline or no sense disambiguation.

7.1 Future work

The article rating system could be improved in two ways. The current

application framework could be changed to relate event weights to human

sentiment (in addition of the stock prices). By conducting tests with human

annotated articles (what is the human sentiment towards the article) the

prediction model can make use of a hybrid model (event weights calculated

CHAPTER 7. CONCLUSION 77

by stock price and human sentiment) to predict the stock price.

At the same time, the article rating could be reprogrammed to run on mul-

tiple threads, as multithreaded processors are gradually becoming the stan-

dard. This would improve the computation time significantly in a real-time

environment. Furthermore new database techniques, such as and MapRe-

duce1 could improve the processing time for our large data sets.

1Programming model to process large data sets, to be used on a distributed computing

clusters. Available as Apache Hadoop: http : //hadoop.apache.org/

Appendix A

Events

stock rise share up dividend increase

stock ascent share grow dividend boost

stock climb share ascend dividend raise

stock increase share heighten dividend climb

stock lift share jump income gain

stock boost share propel income growth

stock advance launch income rise

stock up release income jump

stock grow bring out income increase

stock ascend publish income boost

stock heighten issue income raise

stock jump new application income climb

stock propel new product earning rise

share rise new technology earning gain

share ascent new service earning boost

share climb new software earning growth

share increase dividend gain earning jump

share lift dividend growth earning increase

share boost dividend rise earning climb

share advance dividend jump revenue rise

78

APPENDIX A. EVENTS 79

revenue growth market increase under expectation

revenue earn business deal below expected value

revenue gain sign deal under expected value

revenue boost sign contract forecast loss

revenue jump sign agreement forecast losings

revenue increase get contract forecast losses

revenue raise new contract expect loss

revenue climb partnership expect losings

profit raise expand expect losses

profit rise alliance anticipate loss

profit gain close deal anticipate losings

profit growth get deal anticipate losses

turn profit new deal widespread loss

profit jump finalize deal bad result

profit increase attain contract company loss

profit boost acquire contract company losses

profit climb gain contract company losings

good result gain deal lost contract

solidify position acquire deal lose contract

strengthen position exceed expectation miss contract

market portion up surpass expectation reject deal

market portion grow exceed expected value reject bid

market part up surpass expected value reject contract

market part grow forecast earning turn down deal

market percentage up forecast profit turn down bid

market percentage grow expect earning turn down contract

market portion rise expect profit refuse deal

market part rise anticipate earning refuse bid

market percentage rise anticipate profit refuse contract

market gain below expectation block deal

APPENDIX A. EVENTS 80

postpone deal income decrease profit loss

delay deal income sink profit down

stock drop income fell profit decrease

stock fall income drop profit sink

stock sink income decline profit fell

stock fell income dip profit bad

stock decrease income trim profit drop

stock down income reduce profit decline

stock descend income slice profit dip

stock decline earning loss profit trim

stock dip earning down profit reduce

stock slice earning decrease lawsuit

share drop earning sink case

share fall earning fell suit

share sink earning drop anti trust

share fell earning decline monopoly

share decrease earning dip lose case

share down earning trim lose suit

share descend earning slice copyright violation

share decline revenue loss copyright infringement

share dip revenue down trademark violation

share slice revenue decrease security problem

loss dividend revenue sink security flaw

low earning revenue fell software flaw

low income revenue bad software defect

low revenue revenue drop product defect

low profit revenue decline product flaw

dividend decrease revenue trim global crisis

income loss revenue reduce recession

income down revenue dip bad economy

Appendix B

Training results

WSD NOWSD

Company Articles Event occurences Dates Event occurences Dates

activision 96 108 30 151 38

adobe 198 280 51 383 59

adp 50 84 21 100 21

alexion 21 15 7 31 10

amazon 411 337 107 502 127

amgen 186 104 48 190 62

apple 2319 1823 230 3010 236

applied 71 92 26 126 27

arts 105 103 31 148 43

baidu 129 198 37 247 43

biogen 194 160 49 288 65

bmc 33 62 12 68 13

broadcom 124 135 41 200 52

celgene 89 110 22 157 28

cerner 27 28 10 39 12

81

APPENDIX B. TRAINING RESULTS 82

WSD NOWSD

Company Articles Event occurences Dates Event occurences Dates

cisco 351 324 77 436 102

cme 240 220 52 328 61

cognizant 31 70 12 86 13

comcast 316 328 89 475 105

costco 142 81 22 127 31

dell 586 631 110 868 129

directv 111 126 44 175 54

dish 102 126 38 193 48

ebay 304 384 74 578 96

express 81 113 21 135 28

gilead 76 89 16 110 21

google 2137 2002 235 3199 246

intel 874 893 137 1220 166

intuit 56 86 14 103 22

intuitive 44 44 10 66 16

kraft 829 562 75 783 93

liberty 104 148 28 212 38

microsoft 1079 1193 197 1762 213

news 1251 1159 163 1655 186

oracle 516 760 97 1025 112

APPENDIX B. TRAINING RESULTS 83

WSD NOWSD

Company Articles Event occurences Dates Event occurences Dates

paccar 43 35 9 52 9

powershares 9 2 2 9 5

priceline 89 132 24 158 30

qualcomm 340 380 71 479 82

randgold 73 30 16 40 19

starbucks 258 215 58 316 72

symantec 114 210 27 244 30

texas 108 79 35 102 41

verizon 727 598 153 944 176

viacom 209 310 60 419 72

vodafone 820 541 127 785 152

whole 65 56 14 69 16

yahoo 547 701 143 936 155

TOTAL 16685 16267 2972 23729 3475

Average 348 339 62 494 72

Std Dev 495 438 59 685 64

84

APPENDIX C. VALIDATION RESULTS 85

Appendix C

Validation results

Average based events

WSD NOWSD

Company Articles Event Dates Event Dates

occurences occurences

activision 86 125 33 182 39

adobe 125 206 31 284 37

adp 58 125 23 147 27

alexion 13 28 6 36 7

amazon 651 587 139 904 169

amgen 145 158 37 242 52

apple 2930 2673 231 4483 244

applied 70 88 12 111 16

arts 120 84 25 129 40

baidu 184 368 53 484 59

biogen 127 161 32 217 39

bmc 21 59 9 61 9

broadcom 107 171 34 210 38

celgene 59 88 17 136 28

cerner 10 27 6 27 6

APPENDIX C. VALIDATION RESULTS 86

Average event weights

WSD NOWSD

Company Articles Event Dates Event Dates

occurences occurences

cisco 341 416 78 517 96

cme 565 499 130 764 155

cognizant 27 58 14 69 15

comcast 296 232 62 301 82

costco 139 134 29 153 36

dell 341 324 72 474 90

directv 76 94 31 118 37

dish 142 147 36 213 47

ebay 390 401 77 534 85

express 162 275 44 337 49

gilead 97 101 25 144 34

google 2700 2470 236 3760 243

intel 643 710 122 977 141

intuit 57 88 20 103 24

intuitive 20 44 8 48 9

kraft 331 356 66 439 77

liberty 105 156 29 186 40

microsoft 1245 1295 195 1842 213

news 1381 1258 141 2328 166

oracle 467 568 103 786 120

APPENDIX C. VALIDATION RESULTS 87

Average based events

WSD NOWSD

Company Articles Event Dates Event Dates

occurences occurences

paccar 30 49 9 53 10

powershares 9 1 1 1 1

priceline 48 122 16 128 17

qualcomm 315 445 67 541 78

randgold 77 39 15 45 15

starbucks 355 335 72 524 91

symantec 53 74 17 87 19

texas 175 129 54 163 57

verizon 639 571 126 841 148

viacom 168 202 46 312 67

vodafone 758 589 115 811 145

whole 42 69 14 80 18

yahoo 689 744 99 990 103

TOTAL 17589 17943 2857 26322 3338

Average 366 374 60 548 70

Std Dev 598 545 58 882 63

APPENDIX C. VALIDATION RESULTS 88

Company based events

WSD NOWSD

Company Articles Event Dates Event Dates

occurences occurences

activision 86 12 5 169 39

adobe 125 72 5 283 37

adp 58 9 3 128 26

alexion 13 0 0 29 6

amazon 651 249 44 897 167

amgen 145 66 6 241 52

apple 2930 1994 167 4475 244

applied 70 8 1 110 16

arts 120 24 4 128 40

baidu 184 80 9 473 59

biogen 127 54 10 216 39

bmc 21 12 2 49 9

broadcom 107 38 9 206 38

celgene 59 0 0 129 26

cerner 10 13 3 25 6

APPENDIX C. VALIDATION RESULTS 89

Company based events

WSD NOWSD

Company Articles Event Dates Event Dates

occurences occurences

cisco 341 166 27 513 96

cme 565 59 20 735 153

cognizant 27 2 1 64 15

comcast 296 62 19 297 82

costco 139 19 3 153 36

dell 341 172 34 474 90

directv 76 5 2 117 37

dish 142 25 4 209 47

ebay 390 100 22 532 85

express 162 21 5 326 49

gilead 97 36 9 142 34

google 2700 1995 174 3759 243

intel 643 408 58 973 141

intuit 57 13 2 100 23

intuitive 20 9 2 46 9

kraft 331 123 16 437 77

liberty 105 38 4 180 40

microsoft 1245 1005 128 1842 213

news 1381 538 74 2327 166

oracle 467 237 38 777 119

APPENDIX C. VALIDATION RESULTS 90

Company based events

WSD NOWSD

Company Articles Event Dates Event Dates

occurences occurences

paccar 30 0 0 49 10

powershares 9 0 0 1 1

priceline 48 43 4 123 15

qualcomm 315 259 19 538 77

randgold 77 11 2 43 15

starbucks 355 92 18 517 91

symantec 53 5 3 85 19

texas 175 14 8 162 57

verizon 639 327 68 841 148

viacom 168 63 9 309 67

vodafone 758 294 46 804 144

whole 42 0 0 79 17

yahoo 689 404 45 979 102

TOTAL 17589 9176 1132 26091 3322

Average 366 191 24 544 69

Std Dev 598 421 40 882 63

Bibliography

K. Ahmad, P. de Oliveira, P. Manomaisupat, M. Casey, and T. Taskaya.

Description of events: An analysis of keywords and indexical names. In

Proceedings of the Third International Conference on Language Resources

and Evaluation: Workshop on Event Modelling for Multilingual Document

Linking, pages 29–35. European Language Ressources Association, 2002.

Y. Bar-Hillel. Language and Information. Addison-Wesley, 1964.

F. Benamara, C. Cesarano, A. Picariello, D. Reforgiato, and V. Subrahma-

nian. Sentiment Analysis: Adjectives and Adverbs are better than Ad-

jectives Alone. In IADIS Applied Computing, pages 203–206. Association

for Computational Linguistics, 2007.

T. Brants. Tnt: a statistical part-of-speech tagger. In Proceedings of the

sixth conference on Applied natural language processing, pages 224–231.

Morgan Kaufmann Publishers Inc., 2000.

R. A. Brealey and S. C. Myers. Principles of Corporate Finance with Cdrom,

pages 344 – 375. McGraw-Hill Higher Education, 2000.

E. Brill. Automatic grammar induction and parsing free text: a

transformation-based approach. In Proceedings of the 31st annual meeting

on Association for Computational Linguistics, pages 259–265. Association

for Computational Linguistics, 1993.

S. Brin and L. Page. The anatomy of a large-scale hypertextual web search

engine. Computer Network ISDN System, 30(1-7):107–117, 1998.

91

BIBLIOGRAPHY 92

P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L. Mercer. Word-

sense disambiguation using statistical methods. In Proceedings of the 29th

Annual Meeting of the ACL. Association for Computational Linguistics,

1991.

A. Budanitsky and G. Hirst. Semantic distance in WordNet: An exper-

imental, application-oriented evaluation of five measures. In Workshop

on WordNet and Other Lexical Resources at the Second Meeting of the

North American Chapter of the Association for Computational Linguis-

tics, pages 29–34. Carnegie Mellon University, 2001.

C. Cesarano, B. Dorr, A. Picariello, D. Reforgiato, A. Sagoff, and V.S. Sub-

rahmanian. Oasys: An opinion analysis system. In Proceedings the Spring

Symposia on Computational Approaches to Analyzing Weblogs, pages 21–

26. Association for the Advancement of Artificial Intelligence, 2006.

Y. Chan, A. C. W. Chui, and C. C. Y. Kwok. The impact of salient political

and economic news on the trading activity. Pacific-Basin Finance Journal,

9(3):195–217, 2001.

W. Cho. Knowledge discovery from distributed and textual data. PhD thesis,

Hong Kong University of Science and Technology, 1999.

G. G. Chowdhury. Natural language processing. Annual Review of Infor-

mation Science and Technology, 37(1):51–89, 2003.

J. Christian and E. Tsoukermann. Natural Language Processing for term

variant extraction: synergy between morphology, lexicon, and syntax.,

pages 25–74. Dordrecht: Kluwer Academic Publishers, 1999.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms, Second Edition. The MIT Press, 2001.

J. Cowie, J. Guthrie, and L. Guthrie. Lexical disambiguation using sim-

ulated annealing. In Proceedings of the 14th conference on Computa-

tional linguistics, pages 359–365. Association for Computational Linguis-

tics, 1992.

BIBLIOGRAPHY 93

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A

framework and graphical development environment for robust NLP tools

and applications. In Proceedings of the 40th Anniversary Meeting of the

Association for Computational Linguistics, 2002.

S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.

Harshman. Indexing by latent semantic analysis. Journal of the American

Society of Information Science, 41(6):391–407, 1990.

J. Didion. The Java WordNet Library, 2007. http://jwordnet.

sourceforge.net/.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis, pages

44–64. John Wiley and Sons, 1974.

E. F. Fama. The behavior of stock-market prices. Journal of Business, 38

(1):34–105, 1965.

T. Fawcett and F. Provost. Activity monitoring: noticing interesting changes

in behavior. In Proceedings of the fifth ACM international conference

on Knowledge discovery and data mining, pages 53–62. Association for

Computational Linguistics, 1999.

C. Fellbaum, editor. WordNet: An Electronic Lexical Database (Language,

Speech, and Communication). The MIT Press, 1998.

W. B. Frakes. Stemming algorithms. In Information retrieval: data struc-

tures and algorithms, pages 131–160. Prentice-Hall, Inc., 1992.

Z. Ghahramani. An introduction to hidden markov models and bayesian

networks. In Hidden Markov models: applications in computer vision,

pages 9–42. World Scientific Publishing Co., Inc., 2002.

R. Grishman, C. Macleod, and A. Meyers. Comlex syntax: building a com-

putational lexicon. In Proceedings of the 15th conference on Computa-

tional linguistics, pages 268–272. Association for Computational Linguis-

tics, 1994.

BIBLIOGRAPHY 94

M. A. Hearst. Noun homograph disambiguation using local context in large

corpora. In Proceedings of the 7th Annual Conference of the University

of Waterloo Centre for the New Oxford English Dictionary, pages 1–22,

1991.

M. A. Hearst. Text data mining - issues, techniques and the relationship to

information access. In UW/MS Workshop on Data Mining, pages 623–

645, 1997.

D. Hirshleifer and T. G. Shumway. Good day sunshine: Stock returns and

the weather. Technical report, EconWPA, 2004.

G. Hirst and D. St. Onge. Lexical chains as representations of context for

the detection and correction of malapropisms. In WordNet: An Electronic

Lexical Database, pages 305–332. MIT Press, 1998.

C. H. Hommes. Modeling the stylized facts in finance through simple non-

linear adaptive systems. Proceedings of the National Academy of Sciences,

99(90003):7221–7228, 2002.

W. Hullen. A History of Roget’s Thesaurus. Oxford University Press, New

York, 2003.

W. J. Hutchins and H. L. Somers. An Introduction to Machine Translation,

pages 81 – 97. New York: Academic Press, 1992.

N. Ide and J. Véronis. Introduction to the special issue on word sense

disambiguation: the state of the art. Computational Linguistics, 24(1):

2–40, 1998.

J. J. Jiang and D. W. Conrath. Semantic similarity based on corpus statistics

and lexical taxonomy. In International Conference Research on Compu-

tational Linguistics, pages 19–33, 1997.

D. Jurafsky and J. H. Martin. Speech and Language Processing: An Intro-

duction to Natural Language Processing, Computational Linguistics and

Speech Recognition. Prentice Hall, 2000.

BIBLIOGRAPHY 95

A. Kilgarriff and J. Rosenzweig. Framework and results for English SEN-

SEVAL. Computers and the Humanities, 34(1-2), 2000.

P. Klibanoff, O. Lamont, and T. A. Wizman. Investor reaction to salient

news in closed-end country funds. The Journal of Finance, 53(2):673–699,

1998.

J. J. Korczak, P.r Lipinski, and P. Roger. Evolution strategy in portfolio

optimization. In Selected Papers from the 5th European Conference on

Artificial Evolution, pages 156–167. Springer-Verlag, 2002.

R. Krovetz and W. B. Croft. Lexical ambiguity and information retrieval.

ACM Transactions on Information Systems, 10(2):115–141, 1992.

S. Landes, C. Leacock, and R. I. Tengi. Building semantic concordances.

In WordNet: An Electronic Lexical Database, pages 199–216. MIT Press,

1998.

V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen, and J. Allan.

Language models for financial news recommendation. In Proceedings of

the ninth international conference on Information and knowledge manage-

ment, pages 389–396. Association for Computational Linguistics, 2000.

C. Leacock and M. Chodorow. Combining local context and WordNet sim-

ilarity for word sense identification. In WordNet: An Electronic Lexical

Database, pages 265–283. MIT Press, 1998.

K. Lee, H. Hon, M. Hwang, and X. Huang. Speech recognition using hidden

markov models: a cmu perspective. Speech Commun., 9(5-6):497–508,

1990.

A. Lenci, N. Bel, F. Busa, N. Calzolari, E. Gola, M. Monachini,

A. Ogonowski, I. Peters, W. Peters, N. Ruimy, M. Villegas, and A. Zam-

polli. Simple: A general framework for the development of multilingual

lexicons. International Journal of Lexicography, 13(4):249–263, 2000.

M. Lesk. Automatic sense disambiguation using machine readable dictio-

naries: how to tell a pine cone from an ice cream cone. In Proceedings of

BIBLIOGRAPHY 96

the 5th annual international conference on Systems documentation, pages

24–26. Association for Computational Linguistics, 1986.

D. Lin. Using syntactic dependency as local context to resolve word sense

ambiguity. In Proceedings of the 35th annual meeting on Association for

Computational Linguistics, pages 64–71. Association for Computational

Linguistics, 1997.

A. C. Lobeck. Discovering grammar : an introduction to English sentence

structure. Oxford University Press, 2000.

B. G. Malkiel. A Random Walk Down Wall Street. Norton, New York, 1990.

M. Marcus, G. Kim, M. A. Marcinkiewicz, R. MacIntyre, A. Bies, M. Fer-

guson, K. Katz, and B. Schasberger. The penn treebank: annotating

predicate argument structure. In Proceedings of the workshop on Human

Language Technology, pages 114–119. Association for Computational Lin-

guistics, 1994.

A. Micu, L. Mast, V. Milea, F. Frasincar, and U. Kaymak. Financial news

analysis using a semantic web approach. In Semantic Knowledge Manage-

ment: an Ontology-based Framework, pages 311–328. Idea Group, 2008.

M. Mieskes and M. Strube. Part-of-speech tagging of transcribed speech. In

Proceedings of the 5th Conference on Language Resources and Evaluation.

European Language Resources Association, 2006.

R. Mihalcea. Unsupervised large-vocabulary word sense disambiguation with

graph-based algorithms for sequence data labeling. In HLT ’05: Pro-

ceedings of the conference on Human Language Technology and Empirical

Methods in Natural Language Processing, pages 411–418. Association for

Computational Linguistics, 2005.

R. Mihalcea and D. I. Moldovan. A highly accurate bootstrapping algo-

rithm for word sense disambiguation. International Journal on Artificial

Intelligence Tools, 10(1-2):5–21, 2001.

BIBLIOGRAPHY 97

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller. Intro-

duction to wordnet: An on-line lexical database*. Int J Lexicography, 3

(4):235–244, 1990.

M. L. Mitchell and J. H. Mulherin. The impact of public information on the

stock market. Journal of Finance, 49(3):923–50, 1994.

R. Navigli and M. Lapata. Graph connectivity measures for unsupervised

word sense disambiguation. In IJCAI’07: Proceedings of the 20th interna-

tional joint conference on Artifical intelligence, pages 1683–1688. Morgan

Kaufmann Publishers Inc., 2007.

R. Navigli and M. Lapata. An experimental study of graph connectivity for

unsupervised word sense disambiguation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 32:678–692, 2010.

A. Ng and A. Wai-Chee Fu. Mining frequent episodes for relating financial

events and stock trends. In Advances in Knowledge Discovery and Data

Mining, pages 569–569, 2003.

J. M. Patell and M. A. Wolfson. The intraday speed of adjustment of stock

prices to earnings and dividend announcements. Journal of Financial

Economics, 13(2):223–252, 1984.

T. Pedersen and R. Bruce. Distinguishing word senses in untagged text.

In Proceedings of the Second Conference on Empirical Methods in Natu-

ral Language Processing, pages 197–207. Association for Computational

Linguistics, 1997.

T. Pedersen, S. Banerjee, and S. Patwardhan. Maximizing Semantic Relat-

edness to Perform Word Sense Disambiguation. Research Report UMSI

2005/25, University of Minnesota Supercomputing Institute, 2005.

D. Peramunetilleke and R. K. Wong. Currency exchange rate forecasting

from news headlines. Australian Computer Science Communications, 24

(2):131–139, 2002.

R. Quirk, S. Greenbaum, G. Leech, and J. Svartvik. A comprehensive gram-

mar of the english language. Longman, 1985.

BIBLIOGRAPHY 98

R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application

of a metric on semantic nets. IEEE Transactions on Systems, Man and

Cybernetics, 19(1):17–30, 1989.

P. Resnik. Using information content to evaluate semantic similarity in a

taxonomy. In Proceedings of the Fourteenth International Joint Confer-

ence on Artificial Intelligence, pages 448–453. Morgan Kaufmann, 1995.

R. L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987.

H. Rodŕıguez, S. Climent, P. Vossen, L. Bloksma, W. Peters, A. Alonge,

F. Bertagna, and A. Roventini. The top-down strategy for building eu-

rowordnet: vocabulary coverage, base concepts and top ontology. In Eu-

roWordNet: a multilingual database with lexical semantic networks, pages

45–80. Kluwer Academic Publishers, 1998.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal

representations by error propagation. In Neurocomputing: foundations of

research, pages 673–695. MIT Press, 1988.

M. Sanderson. Word sense disambiguation and information retrieval. In Pro-

ceedings of the 17th annual international ACM SIGIR conference on Re-

search and development in information retrieval, pages 142–151. Springer-

Verlag New York, Inc., 1994.

L. Schubert and M. Tong. Extracting and evaluating general world knowl-

edge from the brown corpus. In Proceedings of the HLT-NAACL 2003

workshop on Text meaning, pages 7–13. Association for Computational

Linguistics, 2003.

Y. Seo, J. A. Giampapa, and K. P. Sycara. Text classification for intelli-

gent agent portfolio management. In International Joint Conference on

Autonomous Agents and Multi-Agent Systems. Springer, 2002.

R. Sheldon. A First Course In Probability, 6/E. Pearson Education, 2002.

ISBN 9788177583618.

BIBLIOGRAPHY 99

R. Sinha and R. Mihalcea. Unsupervised graph-basedword sense disam-

biguation using measures of word semantic similarity. In ICSC ’07: Pro-

ceedings of the International Conference on Semantic Computing, pages

363–369. IEEE Computer Society, 2007.

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-

of-speech tagging with a cyclic dependency network. In Proceedings of the

2003 Conference of the North American Chapter of the Association for

Computational Linguistics on Human Language Technology, pages 173–

180. Association for Computational Linguistics, 2003.

C. J. van Rijsbergen, S. E. Robertson, and M. F. Porter. New models in

probabilistic information retrieval. British Library Research and Develop-

ment Report, no. 5587, 1980.

A. J. Viterbi. Error bounds for convolutional codes and an asymptotically

optimal decoding algorithm. IEEE Transactions on Information Theory,

13:260–269, 1967.

D. E. Walker. Knowledge resource tools for accessing large text files. In Ma-

chine Translation: Theoretical and Methodological Issues. Sergei Niren-

berg, pages 247–261. University Press, 1987.

Z. Wu and M. Palmer. Verb semantics and lexical selection. In 32nd. Annual

Meeting of the Association for Computational Linguistics, pages 133 –138.

Association for Computational Linguistics, 1994.

J. Xu and W. B. Croft. Corpus-based stemming using cooccurrence of word

variants. ACM Transactions on Information Systems, 16(1):61–81, 1998.

D. Yarowsky. Word-sense disambiguation using statistical models of roget’s

categories trained on large corpora. In Proceedings of the 14th conference

on Computational linguistics, pages 454–460. Association for Computa-

tional Linguistics, 1992.

D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised

methods. In Proceedings of the 33rd annual meeting on Association for

BIBLIOGRAPHY 100

Computational Linguistics, pages 189–196. Association for Computational

Linguistics, 1995.

C. Yue-Cheong. Political risk and stock price volatility: The case of hong

kong. Pacific-Basin Finance Journal, 4:259–275(17), 1996.

